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J. Brian Subirana-Vilanova
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the degree of Doctor of Philosophy.

Abstract

In this dissertation I address the problem of visual recognition of non-rigid objects. I

introduce the frame alignment approach to recognition and illustrate it in two types of

non-rigid objects: contour textures and elongated 
exible objects. Frame alignment is

based on matching stored models to images and has three stages: �rst, a \frame curve"

and a corresponding object are computed in the image. Second, the object is brought

into correspondence with the model by aligning the model axis with the object axis; if the

object is not rigid it is \unbent" achieving a canonical description for recognition. Finally,

object and model are matched against each other. Rigid and elongated 
exible objects are

matched using all contour information. Contour textures are matched using �lter outputs

around the frame curve.

The central contribution of this thesis is Curved Inertia Frames (C.I.F.), a scheme for

computing frame curves directly on the image. C.I.F. is the �rst algorithm which can

compute probably global and curved lines, and is based on three novel concepts: �rst, a

de�nition of curved axis of inertia; second, the use of non-cartisean networks; third, a ridge

detector that automatically locates the right scale of objects. The use of the ridge detector

enables C.I.F. to perform mid-level tasks without the need of early vision. C.I.F. can also

be used in other tasks such as early vision, perceptual organization, computation of focus

of attention, and part decomposition

I present evidence against frame alignment in human perception. However, this ev-

idence suggests that frame curves have a role in �gure/ground segregation and in fuzzy

boundaries, and that their outside/near/top/incoming regions are more salient. These

�ndings agree with a model in which human perception begins by setting a frame of refer-

ence (prior to early vision), and proceeds by successive processing of convex structures (or

holes).

The schemes presented for contour texture and elongated 
exible objects use a comon

two-level representation of shape and contour texture which may also be useful to recog-

nize other non-rigid transformations such as holes, rigid objects, articulated objects, and

symbolic objects.

Most of the schemes have been tested on the Connection Machine and compared against

human perception. Some work on part segmentation and holes is also presented.
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Preface

When I �rst came to the M.I.T. A.I. laboratory I wanted to approach \the central

problem" in intelligence by developing some sort of \universal theory of recognition,"

something that was about to \solve A.I.." Soon I realized that this was something

beyond my reach. It became clear to me that progress in A.I. would best be achieved

by researching a \small intelligence problem." I then became increasingly interested

in the study of the relation between human vision, the physical structure of nature,

and the anatomy of computer algorithms. This stemmed, mainly, from observing

that, in the past, progress in one of these areas often has contributed, or served to

guide progress, in another.

The purpose of this dissertation is to elucidate the computational structure of

human vision algorithms. Work in vision, before I came to M.I.T., had focussed

on early vision and recognition of rigid objects. Very little work had been done in

middle-level vision and in the recognition of non-rigid objects. I set myself the goal

of investigating middle-level vision through an understanding of the issues involved

in the recognition of non-rigid objects. I was hoping that much could be learned

from such an excersise. I hope that the contributions presented today in this thesis

may serve as bricks in tomorrow's \intelligent" A.I. systems.

*

This thesis deals with both computational and human aspects of vision. More

progress in computer vision is essential if we want tomorrow's robots to do unpleas-

ant, repetitive, di�cult, or dangerous work in unstructured environments, where

change is constant, and where there can be little or none of the careful environmen-

tal preparation and control characteristic of today's built-for-robots factory. More

progress in human visual perception is essential before we can have a full understand-

ing of the nature of our own visual system. A priori, there is no reason why work on

these two areas should proceed either in parallel nor simultaneously. However, this

thesis, as many other research projects, bene�ts from the synergy between the two.

Interdisciplinary work of this nature belongs to the �eld of computational psychol-

ogy and proposes visual computations with relevant implications in both computer

vision and psychology.

*
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Any investigation of what is fundamentally a topic in the natural sciences must be

shown to be both rigorous and relevant. It must simultaneously satisfy the seemingly

incompatible standards of scienti�c rigor and empirical adequacy. Of the two criteria,

relevance is the most important, and judging by historical example also, the most

di�cult to satisfy.

If an investigation is not rigorous, it may be called into question and the author

perhaps asked to account for its lack of rigor. In computer vision, the critic often

requires that the author provide particular runs of the algorithms proposed on ex-

amples that the critics come across; especially if he had not given enough in the �rst

place, as is often the case. To ensure rigor, the investigation must be based upon a

framework that includes a technique for performing the analysis of the claims and

corresponding algorithms, and for proving them correct.

But if the investigation is not relevant, it will be ignored entirely, dismissed as

an inappropriate (cute at best) hack. In order to ensure relevance, such an in-

terdisciplinary investigation must result in useful vision machines, demonstrate a

comprehensive understanding of the natural sciences involved, and provide three

warrants.

The �rst warrant is a link between the human visual system and the task for which

the studied algorithms are shown to be useful. This link can be at a psychological

level, at a neuroscience level, or at both. In this thesis, the link centers around the

notion of frame curves, frame alignment and inside/outside.

The second warrant is a conceptual framework for the investigation, so that the

algorithms are used to answer relevant questions. The framework must include a

technique for performing an analysis of the algorithms in the domain of one of the

natural sciences, visual perception in this thesis. The technique must ensure that the

insights of the science are preserved. It must be su�ciently general so that others

can extend the investigation, should it prove fruitful to do so.

The third warrant is a contribution to one of the natural sciences, psychology in

this thesis. Such a contribution might take the form of a simply-stated mathematical

thesis or of a less succinct statement such as a set of new visual illusions prompted

by the investigation. Whatever the form of such a contribution, it must be a guide

to scienti�c investigation in the natural science itself. To be relevant, a thesis must

make strong predictions that are easily falsi�ed in principle, but repeatedly con�rmed

in practice. Only under these conditions is it possible to develop con�dence in such a
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thesis. Some of the contributions made here include: results on the relative saliency

of the inside of a contour versus that of the outside; and results on the recognition

of contour textures, holes, and elongated and 
exible objects.

Indeed, the relation between the study of computational models of the human

visual system and that of computer vision is very fuzzy. While the �rst is concerned

with how the human brain \sees" the second one is driven by the goal of building

machines that can use visual information e�ectively. From a historical perspective,

most relevant discoveries in one of the �elds will a�ect the other.

*

This research builds on and corroborates two fundamental assumptions about

the algorithms involved in human vision: �rst, the algorithms are highly dependent

on particular tasks solved by the human brain; and second, the laws of nature are

embodied in the algorithms (indeed, part of the intelligence of visual perception is

not in the brain but in nature itself). The idea that regularities in nature play a key

role in visual perception has been fostered by some. The notion that the task at hand

should drive the architecture of robots has been extensively investigated recently; its

implications to human perception are less well understood. In Appendix B I discuss

some implications of the tasks faced by humans in the nature of the visual system.

One of the apparently-deceiving consequences of the �rst assumption is that we

are bound to understand the computational structure of human vision as a collection

of inter-related algorithms. This is not so surprising if we consider that we understand

a computer as an inter-related set of subsystems such as CPU, printer, and memory

to name but a few, or that we understand nature as a set of relatively independent

theories such as thermodynamics, electromagnetism, or classical mechanics. It is

clear to me that many interactions between the di�erent subsystems exist. The model

presented in Chapter 3 is an example. I have found some of these interactions by

investigating, again, the task at hand and not by trying to speculate on very-general-

purpose intermediate structures. It is as if the human visual system embodied nature

betraying it at the same time (for the sake of the tasks it solves).

*

Many people have contributed to the creation of this thesis:
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1.1 Problem Statement

Automatic visual recognition systems have been successful at recognizing rigid-

objects. In contrast, there has been only limited progress in the recognition of

non-rigid objects.

In this thesis, we address the problems involved in recognition when there are non-

rigid objects in the scene. As part of this study we develop a two-level representation

for non-rigid objects based on the study of three types of non-rigid objects: elongated


exible objects, contour textures, and holes.

The bulk of the work has been devoted to the problem of �nding a computational

paradigm that can perform, in the presence of non-rigid objects, perceptual organi-

zation and other related tasks such as �nding a focus of attention and �gure/ground

segregation. The computational problem that we are interested in is that of �nding

curves and points in images that have certain properties that are not de�ned locally,

neither in the image nor in the scene. As we will see in Section 1.2, these tasks

belong to what is called intermediate or mid-level vision.

Section 1.2 will be devoted to clarifying the notions of mid-level vision and recog-

nition of non-rigid objects. Section 1.3 outlines the problems addressed in this thesis

and Section 1.4 gives an overview of the issues involved in non-rigid vision. Sec-

tion 1.5 gives an outline of the recognition approach proposed in this thesis. The

following two sections give a summary of contributions and an extended abstract

with pointers to the rest of the thesis.

1.2 Non-Rigid Recognition andMid-Level Vision

Humans usually conceive the natural world as being composed of di�erent objects

such as mountains, buildings, and cars. The identity of the objects that we see does

not change despite the fact that their images are constantly changing. As we move

in the environment, the objects are seen from di�erent viewpoints. The change in

viewpoint results in a corresponding change in the images even if the objects have
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not moved. The transformation of the objects in this case is rigid. Most of the

existing computational work on recognition1 is concerned with the case in which the

transformations are rigid2.

Objects can also change, however, in a non-rigid manner and still maintain their

identity, for example trees, people, cables (see Figures 1.1, 1.2, and 1.5). Here we

are concerned with problems associated with the recognition of non-rigid objects.

The study of visual processing in the presence of non-rigid objects is important

for three reasons. First, many objects can undergo non-rigid transformations. Sec-

ond, the ability to compensate for non-rigid transformations is closely related to the

problem of object classi�cation. In many cases, two similar objects in the same class

(e.g. two oak leaves) can be viewed as related by a non-rigid transformation. Third,

rigid objects often appear in images together with non-rigid objects and there is a

need for schemes that can process images with both rigid and non-rigid objects.

Our ability to process images of non-rigid objects is not restricted to recognition.

We can e�ortlessly perform other tasks such as directing our focus of attention, or

segmentation. These two tasks belong to what is called mid-level vision.

We de�ne mid-level vision as the set of visual algorithms that compute global

structures that support segmentation and selective attention. The term mid-level

vision is used to refer to tasks that belong to neither early-vision, which computes

properties uniformly throughout the image array, nor high-level vision (a.k.a. late

vision) which studies recognition, navigation, and grasping3. Two properties charac-

terize mid-level algorithms. First, they compute extended structures such as convex

regions. In contrast, early-vision algorithms are concerned with local properties such

as discontinuities or depth maps. In other words, the result of an early-level com-

putation at any one location depends only on the input values near that location.

Second, they are related to the problems of selective attention and segmentation.

The result of an intermediate level computation is often a data structure that is

1See [Besl and Jain 1985], [Chin and Dyer 1986], [Ullman 1989], [Grimson 1990], [Perrott and

Hamey 1991] for extensive reviews.
2The term rigid transformation in computer vision often includes scale changes which, strictly

speaking, are not rigid transformations.
3Note that mid-level vision is usually confounded with both early level and high-level vision.
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selected for latter processing by another mid-level or high-level algorithm.

Note that we have de�ned the terms early-level, mid-level, and high-level in terms

of the tasks that are performed without referring to the order of the computations.

A lot of researchers, including [Marr 1982], assume that early level computations

should be done before intermediate and high level tasks. That is why they refer to

them as early, mid, and late vision. We, like others, do not make this assumption. In

fact, in our scheme, mid-level precedes early level. If we had to coin the terms again

we would probably use local-vision (for early vision), global-vision (for intermediate

vision), and symbolic vision (for late vision).

Why is visual recognition in the presence of non-rigid objects di�erent than when

only rigid objects are present? Mainly because a change in appearance of a non-

rigid object can not be attributed solely to changes in viewing position or lightness

conditions (see Figures 1.1, 1.2, and 1.3). This implies that rigid transformations

can not be used as the only cues to recover pose. As we will see in Section 1.4, the

algorithms developed for non-rigid recognition are not likely to be applicable to rigid

object recognition.

In addition, mid-level vision in the presence of non-rigid objects is more complex

than when only rigid objects are present. A rigid transformation can be recovered

with a correspondence of only three points [Ullman 1986], [Huttenlocker and Ullman

1987]. Therefore, a segmentation which reliably computes three points belonging

to an object is su�cient to recover the pose of the rigid object. This explains why

most of the work on segmentation of rigid objects is both concerned with reliably

locating small pieces coming from an object, and does not extend to non-rigid objects.

A segmentation algorithm useful for non-rigid recognition needs to recover a more

complete description, not just three points or pairs of parallel lines. Gestalt principles

commonly used in rigid object segmentation research, such as parallelism, can be used

also for non-rigid objects. However, to be useful in non-rigid object segmentation,

Gestalt principles have to be employed to recover full object descriptions not just a

small set of points such as two parallel lines. Note that this does not imply that a

good segmentation scheme for non-rigid objects can not be used for rigid objects. In

fact, most of the work on segmentation presented here is relevant to both rigid and

non-rigid objects.
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A lot of the work on rigid object recognition is based on matching pictorial

descriptions of objects. Again, these schemes are based on the fact that rigid pose

can be determined with the correspondence of a few features. This is a widely used

approach and di�erences between schemes are based on the search mechanism and

the features used.

1.3 Curved Inertia Frames

What are the problems involved in non-rigid vision? Is there a general technique

that will work in all cases? What tasks should be performed at \mid-level"? In

other words, what is a valid research agenda for non-rigid objects? Ten years from

now, what will the main session titles be at a conference on non-rigid recognition?

These are essential questions to pose before one can give structure to non-rigid

vision research. Section 1.4 will give an overview of the problems involved in non-rigid

vision as we understand them and a possible research methodology. This will include

a description of di�erent types of non-rigid objects. Each of these types of non-rigid

objects requires di�erent techniques and therefore can be studied separately.

One type of non-rigid objects are elongated shapes that can bend along their

main axis, such as animal limbs, snakes, and cables. Among the issues involved

in non-rigid vision we have focussed on segmentation and recognition of elongated


exible objects (see Figure 1.4).

We have developed a scheme, Curved Inertia Frames (C.I.F.), that �nds object

axes in arbitrary scenes. Such a scheme is useful for three purposes. First, it can be

used for the recognition of elongated and 
exible objects using a novel recognition

scheme, frame alignment, introduced in Section 1.5 and Chapter 2. Second, it can

be used in segmentation of rigid and non-rigid objects, including those that are

elongated and 
exible. Third, Curved Inertia Frames solve a computational problem

related to that of �nding optimal curves in several situations including:

1. Discontinuities (in stereo, texture, motion, color, brightness).
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2. Frame curves as de�ned in Chapter 4.

3. Skeletons in binary images as shown in Chapter 2.

4. Skeletons in brightness images as shown in Chapter 3.

5. Statistical data interpolation.

00s

These can’t be dinosaurus.
None of them match this
picture!

I know there is an affine
transform of the tool I
need despite occlusion...

80s

Figure 1.1: The robot of the 80s can recognize a rotated/scaled rigid object using
noisy and spurious image contours. However, other transformations such as the
bending of a dinosaur's neck could not be accounted for. In other words, pictorial
matching (even when compensating for rotation and scale) can not account for
non-rigid transformations and new techniques must be developed. Figure adapted
from [Richards 1982].

00s

There are no parallel lines
in this image...

I can locate the tool
by finding the parallel
lines in the image...

80s

?

Figure 1.2: Mid-level algorithms that work for rigid objects do not work for non-
rigid objects.
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years latter...

Using contour texture
and a curved axis of
inertia I can match my
dinosaurus model....

Figure 1.3: For perceptual organization and recognition, the dinosaur can be
represented using Curved Inertia Frames and contour texture.

1.4 Five Key Issues in the Study of Non-Rigid

Objects

There are several issues that need to be tackled to make progress in the study of

vision in the presence of non-rigid objects. Five key issues are:

1. Are there di�erent types of non-rigid objects?

2. How might a non-rigid object be represented?

3. Non-rigid objects have fuzzy boundaries.

4. What is the nature of mid-level algorithms in the presence of non-rigid objects?

5. How might non-rigid transformations be handled? How can it be veri�ed that

a hypothesized transformation speci�es a correct match of a model to an in-

stance?

The next �ve Subsections describe each of these in turn.
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1.4.1 Are there di�erent types of non-rigid objects?

Visual recognition is the process of �nding a correspondence between images and

stored representations of objects in the world. One is assumed to have a library

of models described in a suitable way. In addition, each model in the library can

undergo a certain number of transformations (e.g. rotation, scaling, stretching) which

describe its physical location in space (with respect to the imaging system). More

precisely:

De�nition 1 (Recognition problem): Given a library of models, a set of trans-

formations that these models can undergo, and an image of a scene, determine

whether an/some object/s in the library is/are present in the scene and what is/are

the transformations that de�nes its/their physical location in space4.

Together with autonomous navigation and manipulation, recognition is one of the

abilities desired in automatic visual systems. Recognition is essential in tasks such

as recognition of familiar objects and one's environment, �nger-print recognition,

character recognition (printed and handwritten), license plate recognition, and face

recognition. Recognition can be of aid to geographical information systems, tra�c

control systems, visual inspection, navigation, and grasping.

As mentioned above, existing recognition schemes impose restrictions on the type

of models and the transformations that they can handle. Occasionally, restrictions

will also be imposed on the imaging geometry, such as �xed distance (to avoid scaling)

and orthographic projection (to avoid perspective). The domain in which most work

exists is that in which the library of models is assumed to be composed of rigid

objects. In fact, the ability to cope with both sources of variability, changes in the

imaging geometry, and non-rigid transformations, under the presence of noise and

occlusion, is the essence of any non-rigid recognition scheme.

4This de�nition could be stated more precisely in terms of matching speci�c mathematical shapes

but for the purposes of the present discussion this is not necessary.

Sometimes, solving for the transformation that de�nes the model is considered a separate problem

and is termed the pose problem.
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A natural question is whether one should recognize non-rigid objects with a dif-

ferent scheme than the one used for rigid objects. In fact, there is the possibility

that non-rigid objects, in turn, are divided into several categories based on appliable

recognition strategies.

This is an important point and not a new one to vision. For example, several

techniques exist that recover depth from images: shape from stereo, shape from

motion, shape from shading.

Thus, when considering non-rigid object recognition one is naturally taken to the

question of whether it is just one \problem" or several. In other words, is there a small

set of di�erent categories of non-rigid objects such that objects in the same category

can be recognized with similar recognition schemes? In fact, the di�erence between

the categories may be so large that maybe it is not only matching that is di�erent

but also the other stages of the recognition process. A possible way of performing

this characterization is by looking at the process that caused the non-rigidity5 of the

shape. This results in at least the following categories (See Figures 1.5, and 1.6):

� Parameterized Objects: These are objects which can be de�ned by a �-

nite number of parameters (real numbers) and a set of rigid parts. Classical

examples include articulated objects (where the parameters are the angles of

the articulations) or objects stretched along particular orientations (where the

parameters are the amount of stretching along the given orientations). This do-

main has been studied before, see [Grimson 1990], [Goddard 1992] for a list of

references. Some rigid-based schemes can be modi�ed to handle parameterized

objects when the parameters that de�ne the transformation can be recovered

by knowing the correspondence of a few points (e.g. [Grimson 1990]).

� One-dimensional Flexible Objects: These are objects de�ned by a rigid ob-

ject and a mapping between two curves. The simplest case is that of elongated

objects that can bend such as a snake, the tail of an alligator, and the neck

of a gira�e (see Figures 4.1, 2.1, and 2.3). In these examples, the two curves

correspond to the spinal cord in both model and image [Subirana-Vilanova

5Other alternatives exist. For instance, one could use non-rigid motion research as a basis for a

characterization [Kambhamettu, Goldgof, Terzopoulos and Huang 1993]
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1990].

� Elastic Objects: For objects in this category, the transformation between

the model and the image is given by a tensor �eld. Examples include hearts,

facial expressions, and clothing. Schemes to recognize certain elastic objects in

the 2D plane exist [Broit 1981], [Bajcsy and Kovacic 1987], [Feynman 1988],

[Moshfeghi 1991]. Most work on non-rigid motion can be adapted to recognition

of elastic objects.

� Contour Textures: Models in this category are de�ned by an abstract de-

scription along a curve which we call the frame curve of the contour texture.

Abstract descriptions include the frequency of its protrusions or the variance

in their hight. Examples in this category include clouds, trees, and oak leaves.

A scheme to perform Contour Texture segmentation is presented in Chapter 4

[Subirana-Vilanova 1991].

� Crumpling/Texture: Certain objects such as aluminum cans or cloth can

be recognized even if they are crumpled (see Figure 1.6).

� Handwritten Objects: Cartoons and script are non-rigid objects which hu-

mans can recognize e�ortlessly and which have received a lot of attention in

the Computer Vision literature.

� Symbolic Descriptors: Models in this category are de�ned by abstract or

functional symbolic descriptors. They include part descriptions and holes

[Subirana-Vilanova and Richards 1991]. Holes are objects contained one in-

side another with a non-rigid arrangement such as a door in an unknown wall,

see Appendix B.

Note that these categories de�ne possible transformations for non-rigid objects.

In many cases, a given object may undergo several of these transformations or have

a \part" description [Pentland 1988]. For example, the tail of an alligator can bend

as an elongated 
exible object but its crest has a distinctive contour texture. A

collection of examples of non-rigid objects can be seen in [Snodgrass and Vanderwart

1980] (note that each of the 300 shapes shown in [Snodgrass and Vanderwart 1980]

can be classi�ed into one of the above groups).



1.4: Five Key Issues in the Study of Non-Rigid Objects 29

Note also that not all existing recognition schemes are designed for one particular

category (from the ones above). In fact, there is a lot of work on non-rigid motion and

recognition that tries to match \somewhat" distorted patterns [Burr 1981], [Segen

1989], [Solina 1987], [Pentland and Horowitz 1991] (see [Kambhamettu, Goldgof,

Terzopoulos and Huang 1991] for an overview to non-rigid motion). Thus, some of

these schemes are hard to characterize as belonging to one particular category.

In this thesis we will present research in two of the above categories:

� Elongated Flexible Objects

� Contour Textures.

Appendix B presents work on symbolic objects (holes and part arrangements) which

is also reported elsewhere [Subirana-Vilanova and Richards 1991].

Recognition Versus Classi�cation

One question arises as to whether it is the same physical object or a copy of it that

appears in an image. In some cases, it is useful not to restrict the object in the scene

by considering it to be the very same model. This is sometimes necessary as when

trying to distinguish di�erent industrial parts some of which are copies of each other

- too similar to be worth distinguishing in a noisy image. Another example is a model

of an arbitrary triangle which de�nes the model only partially and includes not one

but a set of possible objects (all triangles) [Rosch, Mervis, Gray, Johnson and Boyes-

Braem 1976], [Mervis and Rosh 1981]. In this last example, the recognition problem

is often termed \classi�cation" because the models do not specify just one shape but

a group or class of shapes [Mervis and Rosch 1981], [Murphy and Wisniewski 1989].

Hence, there is not a clear computational di�erence between the recognition and

classi�cation problems. In non-rigid objects, such a distinction is even more fuzzy

and less useful than in the realm of rigid objects. Indeed, whether we are looking

at the same wave a few feet closer to the beach or at another wave will not make

much of a di�erence if we are recognizing static images. In other words, often when
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recognizing non-rigid objects from a computational point of view it is not necessary

to distinguish between the classi�cation and the recognition problem. Saying that

two leaves are oak leaves and that two clouds are of the same type can be seen as

a classi�cation problem. However, the transformation between the shapes in both

examples can be cast in a similar way to what we would use to track a cloud in the

sky. However, this latter case is an example of contour texture recognition.

For the purposes of this thesis we will concentrate on the computational prob-

lem of recovering the transformations between non-rigid objects. Whether we are

interested in recognition or classi�cation is orthogonal to our research. The facts

that contour textures can often be used in classi�cation (but also recognition) and

that elongated 
exible objects can often be used in recognition (but also classi�ca-

tion) reinforces our point that the distinction between classi�cation and recognition

is fuzzy.

1.4.2 How might we represent a non-rigid object?

Before a recognition system can be put to work we must, somehow, instill in it

knowledge about the objects that it is to locate in the image. No matter what non-

rigid transformation we are addressing (see list given in previous subsection), one is

left with the question of how objects will be represented. There is no reason why such

knowledge can not be represented in di�erent ways for di�erent classes of objects.

In fact, the schemes presented in this thesis use di�erent types of representations for

di�erent non-rigid transformations.

In particular, a novel two-stage representation will be suggested for non-rigid

objects and other complex shapes (see Figure 1.3). The �ndings presented in this

thesis argue in favor of such two-level representation in which one level, which we

call the \frame curve," embodies the \overall shape" of the object and the other,

which we call the \contour texture," embodies more detailed information about the

boundary's shape. See Chapter 4 for a more detailed description and examples.
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1.4.3 Non-rigid objects have fuzzy boundaries

The third issue is the way in which non-rigid boundaries are represented and is

therefore related to the representation one (the second in the list). Rigid object

boundaries can be divided into two classes:

� The �rst class, sharp edge boundaries, is that of boundaries with edges corre-

sponding to rigid wireframes such as polygons and most industrial parts. In

these objects, the edges from di�erent viewpoints are related by a rigid trans-

formation.

� The second class, objects with smooth surfaces, is that of boundaries without

this property because of a curved surface such as the nose of a face or the

body of most airplanes. In this case, the brightness edges from di�erent view

points are not related by a rigid transformation, e.g. when a vertical cylinder

is rotated the visible edges do not change.

This division can be used to classify rigid object recognition schemes into two classes

depending on the type of rigid objects they can deal with.

This thesis argues that non-rigid objects, in addition, have a third type of bound-

ary which we call fuzzy boundaries. Fuzzy boundaries include the boundary of a tree

(where is it?) and that of a cloud (where is it?). As we will see in Chapter 4 and in

Appendix B, such boundaries are also useful for representing certain complex rigid

objects (such as a city skyline).

1.4.4 What is the nature of mid-level algorithms in the presence of

non-rigid objects?

As mentioned in Section 1.2, middle level vision is concerned with the study of

algorithms which compute global properties that support segmentation and selective

attention. Finding a small set of features likely to come from the same object is

useful for rigid object recognition but not for the recognition of non-rigid objects.
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Recent work in computer vision has emphasized the role of edge detection and dis-

continuities in mid-level vision, and has focussed on schemes that �nd small subsets

of features likely to come from a single object; we are interested in robust perceptual

organization schemes that can compute complete regions coming from a single object

without relying on existing edge detectors or other early vision modules.

This thesis suggests a scheme in which perceptual organization precedes early

vision modules such as edge-detection or motion (see Figure 1.7). We also present

evidence that agrees with a model of human visual perception in line with this

suggestion.

1.4.5 How might non-rigid transformations be handled? how can

it be veri�ed that a hypothesized transformation speci�es a

correct match of a model to an instance?

The �nal output of a recognition system is a transformation in the representation

language of the designer's choice. Such a transformation is established between the

model and the output of the intermediate level processes. Since it is important to

be able to recognize objects from a relatively novel view as when we recognize the

outline of a familiar town from a friend's house, common studied transformations

are changes in scale and viewing geometry.

Three critical issues in determining the transformation are hypothesizing (what

transformations are possible), indexing (what transformations/models are likely),

and veri�cation (which transformations are accurate). Veri�cation refers to the prob-

lem of establishing a �tness measure between stored representations of objects and

hypothesized locations of the object in the pre-processed sensor output. Such a �t-

ness measure must be such that it gives high scores if, and only if, there is an object

in the hypothesized location similar to the stored model.

Confounded with recovering transformations is the tolerance to noisy and spurious

data. For example, it is important that systems be able to recognize objects even

if they are partially occluded as when a cloud is hidden behind a building. The

scheme that we will present in the next Chapters is remarkably stable under noisy
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and spurious data.
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Figure 1.4: The objects in these Figures (their parts or the category they belong
to) are elongated and 
exible.
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Articulated Tensor field

Elongated and flexible Contour texture

Handwritten Symbolic (hole)

Figure 1.5: Examples of di�erent types of non-rigid objects (see text for details
and Figure 1.6 ). Does each of these types require a di�erent recognition scheme?
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Figure 1.6: Is crumpling an instance of 2D texture recognition?

image

edges

grouping &
recognition

image

edges, "early vision"
     & recognition

grouping & focus
     of attention

Figure 1.7: Two di�erent views on the role of perceptual organization. Left:

Discontinuities are the �rst computational step - a model widely used in Computer
Vision. Right: We (like others) suggest a model in which perceptual organization
precedes \early vision."
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Figure 1.8: This Figure illustrates the methodology proposed in this Thesis for
investigating the recognition of non-rigid objects (see text for details).
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1.5 The Frame Alignment Approach to Object

Recognition

In Section 1.4.1 we suggested the use of di�erent techniques for each type of non-

rigid transformation. In general, an object can have di�erent transformations. For

example, the tail of an alligator is elongated and 
exible and has a distinctive contour

texture.

Despite the fact that the we propose di�erent approaches for the recognition of

elongated 
exible objects and contour textures, there is one similarity between the

approaches which is worth mentioning: in both cases a curve is used to guide the

recognition process. In the �rst case this curved is called the skeleton of the object

and in the latter the frame curve. In both cases such curve, or frame curve, is

employed to align the model with the object. Thus, we call our approach \frame

alignment".

Frame alignment is the approach that we propose for the recognition of elongated


exible objects and contour textures. It is closely related to the alignment method

to recognition. The basic idea behing the alignment approach is to divide the search

for candidate objects into two stages. First, for all candidate models determine the

transformation between the viewed object and the object model. Second, determine

the object-model that best matches the viewed model. This idea is old, in fact,

the axis of inertia of a shape has been used before to align an object to an image

[Hu 1962], [Weiser 1981], [Marola 1989a, 1989b].. The axis of inertia is a common

feature provided in commertial computer vision packages since it can be computed

easily and can greatly speed matching of two dimensional shapes. A summary of the

philosophy behind the alignment approach can be found in [Ullman 1986].

There is a large number of existing alignment schemes. One thing that distin-

guishes one from another is the type of features that are used in the �rst stage. The

set of such features is called the anchor structure and it is used to determine the

transformation between the viewed object and the object model. Other proposals

exist. For example, people have used di�erent arrangements of points or lines [Lowe

1986], the center of mass [Neisser 1967], the local maxima in a distance transform
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[Orbert 1989] and the axis of inertia or symmetry [Hu 1962], [Weiser 1981], [Marola

1989a, 1989b].

As another example, [Huttenlocker and Ullman 1987] present an alignment scheme

for rigid objects in which three points are shown to be su�cient to recover the trans-

formation. For each triple, the anchor structure in this example, the transformation

between model and object is computed and a best one-to-one match is sought among

all models. The scheme performs an exhaustive search over all possible triples of

points and a record of the best match is kept. Thus, the number of points is impor-

tant because it is directly related with the complexity of the search space.

The basic idea behind our recognition approach to elongated and 
exible object

recognition is to use a curve, the object's skeleton, as an anchor structure. The

skeleton can be used to unbend the object so that it can be match against a canonical

view of the model (see Figures 1.9 and 2.3). In Chapters 2 and 3 we will show how

Curved Inertia Frames can be used to compute the skeleton of an elongated and


exible object.

Similarly, the basic idea behind our recognition approach to contour texture is

to use the contour's central curve (or frame curve) to determine the transformation

between the viewed object and the object model. Chapter 4 presents the second stage

in which a set of �lters are used to match the \unbent" contour textures. Again, we

suggest the use of Curved Inertia Frames to compute the frame curve. [Ullman 1986]

suggested that abstract descriptors be used in alignment. In such context, contour

texture can be seen as a formalization of a certain class of abstract descriptors6.

We call our approach frame alignment since it uses a curve computed by Curved

Inertia Frames as an anchor structure to recognize contour textures and elongated


exible objects. Schemes that use the axis of inertia (or other frames) to align the

object also belong to the frame alignment approach. Note that in both cases the

computation of the curve is confouned with perceptual organization7.

6Contour texture and abstract descriptors are di�erent notions. In fact the notion of abstract

descriptor is more general and need not be restricted to contour texture. In addition, and as we

will see in Chapter 4, we suggest that contour texture be used also in other tasks such as perceptual

organization, indexing, depth perception, and completion.
7Note that we have only implemented the frame computation stage for elongated and 
exible

objects and not for contour textures.



40 Chapter 1: Visual Processing and Non-Rigid Objects

1.6 Major Contributions of this Thesis

Since the recognition of non-rigid objects is a relatively new domain, We have had to

address a diverse set of issues. Nevertheless, this thesis has four major contributions

which can be divided into two groups (following the dissertation's title):

� Non-Rigid Object Recognition: We have identi�ed di�erent relevant prob-

lem domains in the area of non-rigid visual recognition. This includes a list of

di�erent types of non-rigid objects and a two-level representation for non-rigid

objects based on the two domains in which we have concentrated our work (see

Figure 1.3):

{ Elongated and Flexible Objects: We have presented a scheme to

recognize elongated 
exible objects using frame alignment and evidence

against its use in human perception. We have used such evidence to

suggest that, in human perception, holes are independent of the \whole".

{ Contour Texture and Fuzzy Boundaries: We have proposed a �lter-

based scheme for segmentation and recognition of contour textures. In

addition, we have described several peculiarities of non-rigid boundaries

in human perception. Most notably the notion that fuzzy boundaries exist

and that their inside/top/near/incoming regions are more salient.

Both approaches to recognition can be casted within the frame alignment ap-

proach to object recognition.

� Curved Inertia Frames (C.I.F.): C.I.F. is a parallel architecture for mid-

level non-rigid vision based on ridge-detection and random networks. C.I.F. is

the �rst scheme that can �nd provably global curved structures. The scheme

is based on a novel architecture to vision (\random networks") and on �nding

perceptual groups (and other mid-level structures) directly on the image (i.e.

without edges) using a novel ridge detector.

In the following four subsections we discuss in more detail some of these contri-

butions.
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1.6.1 Classi�cation of non-rigid objects: Frame Alignment and two

level-representation

This thesis proposes the use of di�erent schemes for recognizing contour texture

and elongated structures. Identifying di�erent domains is a hard problem and a

contribution in itself, especially in new areas such as the recognition of non-rigid

objects. In other vision domains it is well accepted that di�erent techniques should be

used to solve a given taks. For example, diverse techniques exist for depth perception,

stereo, shading, motion, texture, focus, range data (psychophysical evidence suggests

the human visual system uses several techniques as well). Similarly, we propose the

use of di�erent techniques for recognition of non-rigid objects.

The schemes that are proposed for the recognition of contour textures and elon-

gated 
exible objects are instances of frame alignment and lead to a novel two-level

representation of objects which can support other non-rigid transformations.

The methodology for non-rigid vision used in this thesis is outlined in Figure 1.8.

We believe it can be extended to non-rigid transformations not covered in this thesis

(see Figure 5.1).

1.6.2 Curved axis of inertia and center of mass for mid-level vision

The study of reference frames has received considerable attention in the computer

vision literature. Reference frames have been used for di�erent purposes and given

di�erent names (e.g. skeletons, voronoi diagrams, symmetry transforms). Previous

schemes for computing skeletons fall usually into one of two classes. The �rst class

looks for a straight axis, such as the axis of inertia. These methods are global (the

axis is determined by all the contour points) and produce a single straight axis. The

second class can �nd a curved axis along the �gure, but the computation is based on

local information. That is, the axis at a given location is determined by small pieces

of contours surrounding this location. In addition, recently schemes based on snakes

[Kass, Witkin, and Terzopoulos 1988] have been presented; these schemes require an

initial good estimate or are not provably optimal.
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We have developed a scheme for computing skeletons which is curved and global.

Such a novel de�nition of curved-axis of inertia can be used for several mid-level

tasks. However, our motivation comes from its use in perceptual organization and

computation of a focus of attention in the recognition of elongated and 
exible ob-

jects. Other possible uses are described in Chapter 2.

The de�nition of curved axis of inertia used by Curved Inertia Frames is such

that it can be applied directly on the image and for di�erent tasks such as computing

frame curves, ridge detection, and early vision.

1.6.3 Dynamic programming and random networks

The problem of �nding curves in images is an old one. It appears in many aspects of

computer vision and data processing in general. The problem solved here is closely

related to that of �nding discontinuities in stereo, motion, brightness, and texture.

Two things make the approach presented here relevant. First, the de�nition

of curved axis of inertia stated above. Second, we present a dynamic programming

scheme which is provably global and is guaranteed to �nd the optimal axes (it simply

can not go wrong!).

Dynamic programming has been used before but only on bitmap images and with-

out provably global results (due to the need for smoothing or curvature computation)

nor incorporating Gestalt notions such as symmetry and convexity [Ullman 1976],

[Shashua and Ullman 1988], [Subirana-Vilanova 1990], [Subirana-Vilanova and Sung

1992], [Spoerri 1992], [Freeman 1992].

We present a remarkably e�cient dynamic programming network that can com-

pute globally salient curves that are smooth (unlike the approaches of [Shashua &

Ullman 1988], [Subirana-Vilanova 1990], [Spoerri 1992], and [Freeman 1992] which

use non-global approximations of smoothness based on energy minimization or cur-

vature propagation).

We present a proof that such dynamic programming networks can use one and

only one state variable; this constrains their descriptive power, yet we show that one
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can combine curvature, length, and symmetry to �nd curves in an arbitrary surface

(not just on bitmap representations).

There are three other things that make this approach relevant. First, it uses a

non-cartesian network on the image plane. In particular, we introduce the notion of

random networks which are built by randomly throwing line arrangements of pro-

cessors in the image plane. The approach lends itself to other types of arrangements

such as those resulting from lines uniformly sampled in polar coordinates.

Second, all processors represent (about) the same length unlike previous ap-

proaches in which processors at some orientations (such as \diagonals") have dif-

ferent length. This is important because our approach does not have a small subset

of orientations (such as the horizontal, vertical, and diagonal) that are di�erent than

the rest.

Third, processing can be selectively targeted at certain regions of the image array.

This is di�erent from previous approaches which use cartesian networks and therefore

have the same density of processors in all areas of the image array.

Finally, we should mention that C.I.F. can be used in several tasks. We demon-

strate its use in two tasks (�nding skeletons in bitmaps and in color images). There

are other domains in which they could be used such as �nding discontinuities (in

stereo, texture, motion, color, brightness), �nding frame curves, and statistical data

interpolation.

1.6.4 Processing directly in the image: A ridge detector

Recent work in computer vision has emphasized the role of edge detection and dis-

continuities in segmentation and recognition. This line of research stresses that edge

detection should be done both at an early stage and on a brightness representation

of the image; according to this view, segmentation and other early vision modules

operate later on (see Figure 1.7 left). We (like some others) argue against such an

approach and present a scheme that segments an image without �nding brightness,

texture, or color edges (see Figure 1.7 right and Section 3.2). In our scheme, discon-
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tinuities and a potential focus of attention for subsequent processing are found as

a byproduct of the perceptual organization process which is based on a novel ridge

detector.

Our scheme for perceptual organization is new because it uses image information

and incorporates Gestalt notions such as symmetry, convexity, and elongation. It is

novel because it breaks the traditional way of thinking about mid-level vision and

early vision as separate processes. Our suggestion implies that they are interrelated

and should be thought of as the same.

In particular, we present a novel ridge detector which is designed to automatically

�nd the right scale of a ridge even in the presence of noise, multiple steps, and narrow

valleys. One of the key features of the ridge detector is that it has a zero response at

discontinuities. The ridge detector can be applied both to scalar and vector quantities

such as color.

We also present psychophysical evidence that agrees with a model in which a

frame is set in the image prior to an explicit computation of discontinuities. This

contrasts with a common view that early vision is computed prior to mid-level (or

global vision).

1.7 Road Map: Extended Abstract With Point-

ers

In this dissertation we address the problem of visual recognition for images containing

non-rigid objects. We introduce the frame alignment approach to recognition and

illustrate it in two types of non-rigid objects: contour textures (Chapter 4) and

elongated 
exible objects (Chapters 2 and 3 and appendices). Frame alignment is

based on matching stored models to images and has three stages: �rst, a \frame

curve" and a corresponding object are computed in the image. Second, the object

is brought into correspondence with the model by aligning the model axis with the

object axis; if the object is not rigid it is \unbent" achieving a canonical description

for recognition. Finally, object and model are matched against each other. Rigid
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and elongated 
exible objects are matched using all contour information. Contour

textures are matched using �lter outputs around the frame curve.

The central contribution of this thesis is Curved Inertia Frames (C.I.F.), a scheme

for computing frame curves directly on the image (Chapters 2 and 3). C.I.F. can also

be used in other tasks such as early vision, perceptual organization, computation of

focus of attention, and part decomposition. C.I.F. is the �rst algorithm which can

compute probably global and curved lines. C.I.F. is based on computing reference

frames using a novel de�nition of \curved axis of inertia" (de�ned in Sections 2.5

to 2.7). Unlike previous schemes, C.I.F. can extract curved symmetry axes and yet

use global information. Another remarkable feature of C.I.F. is its stability to input

noise and its tolerance to spurious data.

Two schemes to compute C.I.F. are presented (Chapters 2 and 3). The �rst uses

a discontinuity map as input and has two stages. In the �rst stage (Section 2.5),

\tolerated length" and \inertia values" are computed throughout the image at dif-

ferent orientations. Tolerated length values are local estimates of frame curvature

and are based on the object's width, so that more curvature is tolerated in narrow

portions of the shape. Inertia values are similar to distance transforms and are local

estimates of symmetry and convexity, so that the frame lies in central locations. In

the second stage (Section 2.6), a parallel dynamic programming scheme �nds long

and smooth curves optimizing a measure of total curved inertia. A theorem prov-

ing computational limitations of the dynamic programming approach is presented

in Section 2.9. The study of the theorem leads to several variations of the scheme

which are also presented, including a 3D version and one using random networks

in Section 2.10 (random networks had never been used in vision before and provide

speed ups of over 100).

The second scheme, presented in Chapter 3, di�ers from the above one in its

�rst stage. In the second version, tolerated length and inertia values are computed

directly in the image. This enables the computation of C.I.F. using color, texture,

and brightness without the need to pre-compute discontinuities. Exploring schemes

that work without edges is important because often discontinuity detectors are not

reliable enough, and because discontinuity maps do not contain all useful image

information. The second scheme is based on a novel non-linear vector ridge detector



46 Chapter 1: Visual Processing and Non-Rigid Objects

presented in Section 3.7 which computes tolerated length and inertia values directly

on the image (Section 3.6 describes problems involved in the de�nition of ridges).

The ridge detector does not respond to edges and selects the appropriate scale at

every image location. Section 3.9 present experiments on color images and analytical

results presented in Section 3.8 show that, under varying scale and noise, the scheme

performs remarkably better than well known linear �lters with optimum SNR.

The computation of C.I.F. is useful for middle level vision because it results in

both a set of central points and a perceptual organization. Central points of the

object, at which further processing can be directed, are computed using a novel

de�nition of \curved center of mass" (Section 3.9). C.I.F. also computes a set of

\largest curved axes" which leads to a perceptual organization of the image re-

sembling a part-description for recognition. Most perceptual organization schemes

designed for rigid-object recognition can not be used with non-rigid objects. This is

due to the fact that they compute only a small set of localized features, such as two

parallel lines, which are su�cient to recover the pose of a rigid object but not that

of a non-rigid one. By using the notion of curved axis of inertia, C.I.F. is able to

recover large, elongated, symmetric, and convex regions likely to come from a single

elongated 
exible object.

A scheme to recognize elongated 
exible objects using frame alignment and the

perceptual organization obtained by C.I.F. is presented in Chapter 2. The scheme

uses C.I.F. as an anchor structure to align an object to a canonical \unbent" version

of itself. The scheme, including the computation of C.I.F., has been implemented on

the Connection Machine and a few results are shown throughout this thesis. Evidence

against frame alignment is presented in Appendix B and in [Subirana-Vilanova and

Richards 1991].

C.I.F. leads to a two-level representation for the recognition of non-rigid objects

(see Figure 1.3). Chapters 2 and 3 introduce the �rst level, which is a part description

of the shape computed by C.I.F.. The second, which we call contour texture, is a

representation of complex and non-rigid boundaries, and is described in Chapter 4.

In Chapter 4, we show that frame alignment can also handle fuzzy non-rigid

boundaries such as hair, clouds, and leaves. We call such boundaries contour tex-
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tures and present (in Section 4.6) a novel �lter-based scheme for their recognition.

The scheme is similar to existing �lter-based approaches to two-dimensional texture,

with two di�erences: the emphasis is on a description along the main boundary

contour, not along a two-dimensional region; and inside/outside relations are taken

into account. We present psychophysical evidence (similar to that mentioned above)

that a pictorial matching measure based solely on distance is not su�cient unless

inside/outside relations are taken into account. The scheme can handle spurious

data and works directly on the image (without the need for discontinuities).

In summary, the �rst four chapters of this thesis present a computational ap-

proach to non-rigid recognition based on a shape representation with two-levels: a

part description capturing the large scale of the shape, and a complementary bound-

ary description capturing the small scale (see Chapter 4 and Section 4.5). The former

is computed by C.I.F. and the latter by contour texture �lters.

In Chapter 5 we review the work presented and give suggestions for future re-

search. In Appendix A we discuss how Curve Inertia Frames can incorporate several

perculiarities of human perception and present several unresolved questions.

In Appendix B we present evidence against frame alignment in human perception.

However, this evidence suggests that frame curves have a role in �gure/ground seg-

regation and in fuzzy boundaries, and that their outside/near/top/incoming regions

are more salient. These �ndings agree with a model in which human perception be-

gins by setting a frame of reference (prior to early vision), and proceeds by successive

processing of convex structures (or holes).

Thus, in this Thesis we present work on non-rigid recognition (Chapter 1 and

Sections 2.1, 2.8, 3.1, 3.2, 3.5, 3.6, 3.9, and Appendices), algorithms to compute frame

curves (Chapters 1, 2, and 3), and human perception (Chapter 4, and Appendices A

and B).
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Skeleton

Warp-pair

(1.23, 2.45, 6.12, ... )

Correlated output
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Elongated flexible objs. Contour texture objs.

"Unbending"
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"Unbent objects"
Non-linear filter output

Framing: Curved Inertia Frames

Figure 1.9: This �gure illustrates how frame alignment works on two types of non-
rigid objects. In both cases, perceptual organization is done by Curved Inertia
Frames Left: Frame alignment applied to elongated and 
exible objects. Curved
Inertia Frames computes an axis which is used to unbend the objects and match
them to a model. Right: Frame alignment applied to contour textures. Curved
Inertia Frames computes the center line of the contour texture, the frame curve,
and a �lter-based scheme is applied around the frame curve to match the objects.
See text for details. Two other examples are shown in Figure 5.11.



Elongated Flexible Objects

Chapter 2

2.1 Skeletons for Image Warping and the Recog-

nition of Elongated Flexible Objects

Elongated and 
exible objects are quite common (see Figures 2.1, 2.6, 2.4, 5.2,

2.2, and 2.3). For example body limbs, tree branches, and cables are elongated or

have parts that are elongated and 
exible. Gestalt psychologists already knew that

elongation was useful in perceptual organization. Elongation has been used as acue

for segmentation by many. However, there is not much work on the recognition of

this type of objects [Milller 1988], [Kender and Kjeldsen 1991].

In Section 1.4 we discussed �ve of the issues involved in the recognition of non-

rigid objects. Frame alignment, our approach to recognizing elongated and 
exible

objects is best understood by �rst considering the second issue in the list: what is

the shape representation used.

A shape representation is an encoding of a shape. A common approach is to

describe the points of the shape in a cartesian coordinate reference frame �xed in

the image (see Figure 2.7). An alternative is to center the frame on the shape so

that a canonical independent description can be achieved. For some shapes this can

be obtained by orienting the frame of reference along the inertia axis of the shape

(see Figure 2.7).

49
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If the objects are elongated and 
exible, we suggest another alternative that

might be more appropriate, the use of a curved frame of reference (see Figure 2.4).

Recognition can be achieved using a canonical description of the shape obtained

by rotating or \unbending" the shape using the frame as an anchor structure (see

Figure 2.4). This approach belongs to the frame alignment approach to recognition

as described in Section 1.5.

In this Chapter, we address the problem of �nding reference frames in bitmap

images (a.k.a. skeletons, symmetry transforms, distance transforms, voronoi dia-

grams etc.). Our approach is called Curved Inertia Frames (C.I.F.) and is based on

a novel de�nition of \curved axis of inertia" and the use of non-cartesian networks.

In Chapter 3 we extend C.I.F. to work directly on the image.

2.2 Curved Inertia Frames and Mid-Level Vision

The relevance of our work on C.I.F. extends beyond the recognition of elongated and


exible objects. In fact, the problem of recovering a curved axis for recognition is

related to many problems in intermediate level vision. Frame axis can be used for a

variety of tasks such as recognition, attention, �gure-ground, perceptual organization

and part segmentation. For example, for complex shapes a part decomposition for

recognition can be obtained with a skeleton1-like frame2 (e.g. [Connell and Brady

1987], see Figure 2.8). Curved Inertia Frames is capable of performing several in-

termediate level tasks such as perceptual organization and locating salient points at

which to direct further processing.

Little is known about middle-level vision in humans. Are middle-level visual

computations performed on top (and independently of) early vision? How many

di�erent computations are performed? What is the output of middle-level vision?

Chapters 2, 3, 4 and the Appendices of this thesis address middle-level vision

- with special emphasis on domains where non-rigid objects are present. We are

1A more detailed de�nition of skeletons will be given later in the Chapter
2There is some evidence that these types of representations may be easier to recognize than

images of the objects [Rhodes, Brennan, and Carley 1987]
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interested in exploiting regularities in nature to design useful algorithms which work

directly in the image (without knowing the detailed contents of the image). The

words \useful," \directly," and \regularities" require further clari�cation. By useful

we mean several things: if the algorithms can help existing computer vision systems,

they are useful; if the algorithms can help us gain insight into human perception, they

are useful; if the algorithms model certain properties of the visual system, they are

useful. By directly we mean that we are interested in solving an intermediate level

task working directly in the image array. In other words, we would like to disregard

early vision modules so that it is not necessary to compute discontinuities before

�nding the frames3 By regularities we mean general properties about the scene being

imaged which can be e�ectively used to solve middle-level vision problems. One of

the most widely used regularities is parallelism: parallel structures normally come

from the same object so that, when present in images, they can be used to segment

the image without the need for explicitly knowing the object. The scheme that

we present in the next Chapter, Curved Inertia Frames, is designed to make use of

parallelism, convexity, elongation, and size. What is new about it is that it uses

curved and global measures.

Outline of Curved Inertia Frames

We will present two versions of C.I.F.. In this Chapter we will present one that uses

discontinuity maps as input. In the next Chapter we present a second version which

extends the scheme to work directly on the image (without edges).

C.I.F. is divided into two successive stages. In Section 2.5, we present the �rst

stage, in which we obtain two local measures at every point, the \inertia value" and

the \tolerated length", which will provide a local symmetry measure at every point

and for every orientation. This measure is high if locally the point in question appears

to be a part of a symmetry axis. This simply means that, at the given orientation, the

point is equally distant from two image contours. The symmetry measure therefore

produces a map of potential fragments of symmetry curves which we call the inertia

surfaces. In Sections 2.6 and 2.7, we present the second stage in which we �nd

3This Chapter will present a scheme which uses early vision modules. In Chapter 3 we will

extend the scheme so that it works directly on the image.
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long and smooth axes going through points of high inertia values and tolerated

length. In Section 2.8, we introduce a novel data structure, the skeleton sketch,

and show some results and applications of the scheme. In Section 2.9, we prove a

theorem that shows some strong limitations on the class of measures computable

by the computation described in Sections 2.6 and 2.7. In fact, it proves that the

version of C.I.F. presented in Sections 2.6 and 2.7 is not global. This leads to a

new computation based on non-cartesian networks in Section 2.10. This is a central

Section because it introduces a truly global and e�cient computation.

In Appendices B and A we discuss the relation between C.I.F. and human per-

ception. In Section 2.11, we present some limitations of our scheme and a number of

topics for future research. In Chapter 3, we extend our scheme to grey-level, color

and vector images by presenting a scale-independent ridge-detector that computes

tolerated length and inertia values directly on the images.

2.3 Why Is Finding Reference Frames Not Triv-

ial?

Finding reference frames is a straightforward problem for simple geometric shapes

such as a square or a rectangle. The problem becomes di�cult for shapes that

do not have a clear symmetry axis such as a notched rectangle (for some more

examples see Figures 2.4, 2.9, 2.11, and 2.18), and none of the schemes presented

previously can handle them successfully. Ultimately, we would like to achieve human-

like performance. This is di�cult partly because what humans consider to be a good

skeleton can be in
uenced by high-level knowledge (see Figures 2.8 and 2.9).

2.4 Previous Work

The study of reference frames has received considerable attention in the computer vi-

sion literature. Reference frames have been used for di�erent purposes (as discussed

above) and given di�erent names (e.g. skeletons, voronoi diagrams, symmetry trans-
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forms). Previous schemes for computing skeletons usually fall into one of two classes.

The �rst class looks for a straight axis, such as the axis of inertia. These methods

are global (the axis is determined by all the contour points) and produce a single

straight axis. The second class can �nd a curved axis along the �gure, but the

computation is based on local information. That is, the axis at a given location is

determined by small pieces of contours surrounding the location. Examples of such

schemes are, to name but a few, Morphological Filters (see [Serra 1982], [Tsao and

Fu 1984], [Meyer and Beucher 1990], [Maragos and Schafer 1986] for an overview),

Distance Transforms [Rosenfeld and Pfaltz 1968], [Borgefors 1986], [Arcelli, Cordella,

and Levialdi 1981], [Hansen 1992] Symmetric Axis Transforms [Blum 1967], [Blum

and Nagel 1978] and Smoothed Local Symmetries [Brady and Asada 1984], [Connell

and Brady 1987], [Rom and Medioni 1991]. Recently, computations based on phys-

ical models have been proposed by [Brady and Scott 1988] and [Scott, Turner, and

Zisserman 1989]. In contrast, the novel scheme presented in this Chapter, which we

call Curved Inertia Frames (C.I.F.), can extract curved symmetry axes, and yet use

global information.

In most approaches, the compact and abstract description given by the reference

frame is obtained after computing discontinuities. The version of C.I.F. presented in

this Chapter also assumes a pre-computation of discontinuities. In other approaches,

the abstract description given by the frame is computed simultaneously to �nd the

frame or the description of the shape. Examples of such approaches include general-

ized cylinders [Binford 1971], [Nevatia and Binford 1977], [Marr and Nishihara 1978],

[Brooks, Russell and Binford 1979], [Biederman 1985], [Rao 1988], [Rao and Neva-

tia 1988] superquadrics [Pentland 1988], [Terzopoulos and Metaxas 1986], [Metaxas

1992], extrema of curvature [Duda and Hart 1973], [Hollerbach 1975], [Marr 1977],

[Binford 1981], [Ho�man and Richards 1984] to name a few. Similar computations

have been used outside vision such as voronoi diagrams in robotics [Canny 1988]

[Arcelli 1987]. An extension of C.I.F. to working without discontinuities is presented

in Chapter 3.
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2.4.1 Five problems with previous approaches

Previously presented computations for �nding a curved axis generally su�er from

one or more of the following problems: �rst, they produce disconnected skeletons

for shapes that deviate from perfect symmetry or that have fragmented boundaries

(see Figure 2.11); second, the obtained skeleton can change drastically due to a

small change in the shape (e.g. a notched rectangle vs a rectangle as in Figure 2.11)

making these schemes unstable; third, they do not assign any measure to the di�erent

components of the skeleton that indicates the \relative" relevance of the di�erent

components of the shape; fourth, a large number of computations depend on scale,

introducing the problem of determining the correct scale; and �fth, it is unclear what

to do with curved or somewhat-circular shapes because these shapes do not have a

clear symmetry axis.

Consider for example, the Symmetric Axis Transform [Blum 1967]. The SAT of

a shape is the set of points such that there is a circle centered at the point that is

tangent to the contour of the shape at two points but does not contain any portion

of the boundary of the shape, (see [Blum 1967] for details). An elegant way of

computing the SAT is by using the brush�re algorithm which can be thought of as

follows: A �re is lit at the contour of the shape and propagated towards the inside

of the shape. The SAT will be the set of points where two fronts of �re meet. The

Smoothed Local Symmetries [Brady and Asada 1984] are de�ned in a similar way

but, instead of taking the center point of the circle, the point that lies at the center

of the segment between the two tangent points is the one that belongs to the SLS

and the circle need not be inside the shape. In order to compute the SAT or SLS

of a shape we need to know the tangent along the contours of the shape. Since the

tangent is a scale dependent measure so are the SLS and the SAT.

One of the most common problems (the �rst problem above) in skeleton �nding

computations is the failure to tolerate noisy or circular; this often results in discon-

nected and distorted frames. A notched rectangle is generally used to illustrate this

point, see [Serra 1982], [Brady and Connell 1987] or [Bagley 1985] for some more

examples. [Heide 1984], [Bagley 1985], [Brady and Connell 1987], [Fleck 1985, 1986,

1988], [Fleck 1989] suggest solvign this stability problem by working on the obtained

SLS: eliminating the portions of it that are due to noise, connecting segments that
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come from adjacent parts of the shape and by smoothing the contours at di�erent

scales. In our scheme, symmetry gaps are closed automatically since we look for the

largest scale available in the image, and the frame depends on all the contour, not

just a small portion - making the scheme robust to small changes in the shape.

SAT and SLS produce descriptions for circular shapes which are not useful in

general because they are simple and often fragemented. [Fleck 1986] addressed this

problem by designing a separate computation to handle circular shapes, the Local

Rotational Symmetries. C.I.F. can incorporate a preference for the vertical that will

bias the frame towards a vertical line in circular shapes. When the shape is composed

of a long straight body attached to a circular one (e.g. a spoon) then the bias will

be towards having only one long axis in the direction of the body.
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Figure 2.1: The objects in these Figures (their parts or the category to which they
belong) are elongated and 
exible.
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Figure 2.2: Several objects which contain parts that are elongated and 
exible.

Image

Edges

Skeleton

Object

Unbent object

Warp-pair

Edge detection

Skeleton finding

Perceptual organization

Unbending

Verification

Curved Inertia
Frames (edge
version)

Curved Inertia
Frames (C.I.F)
(no edge version)

Figure 2.3: Summary of scheme proposed for the recognition of elongated 
exible
objects.
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Figure 2.4: Which two of the three shapes on the left are more similar? One
way of answering this question is by \unbending" the shapes using their skeleton
as a reference frame, which results in the three shapes on the right. Once the
shapes have been unbent, it can be concluded using simple matching procedures
that two of them have similar \shapes" and that two others have similar length.
We suggest that the recognition of elongated 
exible objects can be performed
by transforming the shape to a canonical form and that this transformation can
be achieved by unbending the shape using its skeleton as an anchor structure.
The unbending presented in this �gure was obtained using an implemented lisp
program (see also Figure 2.3).

.

Figure 2.5: Example of the transformation suggested illustrated on a mudpupy.
This �gure shows the skeleton of the mudpupy and an \unbent" version of the
mudpupy. The unbending has been done using an implemented lisp program.
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Figure 2.6: An elongated shape, when bent, gradualy develops a hole. This
observation will lead us, in Appendix B to analyze the relation between holes,
elongated and 
exible objects, and perceptual organization.

Figure 2.7: Left: a shape described in an image or viewer centered reference frame.
Center: the same shape with an object centered reference frame superimposed on
it. Right: a \canonical" description of the shape with horizontal alignment axis.
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Figure 2.8: Drawings of a woman, a horse and a rider, a man, and a crocodile
made by Tallensi tribes (adapted from [Deregowski 1989]). See also [Marr and
Nishihara 1978].

Figure 2.9: All the shapes in this Figure have been drawn by adding a small
segment to the shape in the middle. At a �rst glance, all of these shapes would
be interpreted as two blobs. But if we are told that they are letters, then �ner
distinctions are made between them. When we use such high level knowledge, we
perceive these shapes as being di�erent and therefore their associated skeletons
would di�er dramatically.
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Figure 2.10: This Figure illustrates the importance of symmetry and convexity in
grouping. The curves in the left image are grouped together based on symmetry.
In the right image, convexity overrides symmetry, after [Kanizsa and Gerbino 76].
This grouping can be performed with the network presented in this Chapter by
looking for the salient axes in the image.
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2.5 Inertia Surfaces and Tolerated Length

If we are willing to restrict the frame to a single straight line, then the axis of least

inertia is a good reference frame because it provides a connected skeleton and it can

handle nonsymmetric connected shapes. The inertia In(SL;A) of a shape A with

respect to a straight line SL is de�ned as (See Figure 2.12):

In(SL;A) =
Z
A
D(a; SL)2da (2:1)

The integral is extended over all the area of the shape, and D(a; SL) denotes the
distance from a point a of the shape to the line SL. The axis of least inertia of a

shape A is de�ned as the straight line SL minimizing In(SL;A).

A naive way of extending the de�nition of axis of least inertia to handle bent

curves would be to use Equation 2.1, so that the skeleton is de�ned as the curve C

minimizing In(C;A). This de�nition is not useful if C can be any arbitrary curve

because a highly bent curve, such as a space-�lling-curve, that goes through all points

inside the shape would have zero inertia (see Figure 2.13). There are two possible

ways to avoid this problem: either we de�ne a new measure that penalizes such

curves or we restrict the set of permissible curves.

We chose the former approach and we call the new measure de�ned in this Chapter

(see equation 4) the global curved inertia (inertia or curved inertia for short), or

skeleton saliency of the curve. The curved inertia of a curve will depend on two

local measures: the local inertia value I (inertia value for short) that will play a role

similar to that of D(p; a) in equation 2.1 and the tolerated length T that will prevent

non-smooth curves from receiving optimal values. The curved inertia of a curve will

be de�ned for any curve C of length L starting at a given point p in the image. We

de�ne the problem as a maximization problem so that the \best" skeleton will be

the curve that has the highest curved inertia. By \best" we mean that the skeleton

corresponds to the \most central curve" in the \most interesting (i.e. symmetric,

convex, large)" portion of the image.

Once a de�nition of inertia has been given, one needs an algoritm to compute the

optimum curve. Unfortunately, such algorithm will be exponential in general because
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the number of possible curves is exponential in the size of the image. Therefore, one

has to insure that the inertia function that one de�nes leads to a tractable algorithm

to �nd the optimum curve.

2.5.1 The inertia value

The inertia measure I for a point p and an orientation � is de�ned as (see Fig-

ure 2.14):

I(p; �) = 2R (R�r)s
Rs ,

Figure 2.14 shows how r, R, and the inertia surfaces are de�ned for a given orientation

�. R = d(pl; pr)=2 and r = d(p; pc), where pl and pr are the closest points of the

contour that intersect with a straight line perpendicular to � (i.e. with orientation

� + �=2) that goes through p in opposite directions and pc is the midpoint of the

interval between these two points. For a given orientation, the inertia values of the

points in the image form a surface that we call the inertia surface for that orientation.

Figure 2.13 illustrates why the inertia values should depend on the orientation of the

skeleton, and Figure 2.15 shows the inertia surfaces for a square at eight orientations.

Local maxima on the inertia values for one orientation indicate that the point is

centered in the shape at that orientation4. The value of the local maximum (always

positive) indicates how large the section of the body is at that point for the given

orientation, so that points in large sections of the body receive higher inertia values.

The constant s or symmetry constant, 2 in the actual implementation, controls the

decrease in the inertia values for points away from the center of the corresponding

section, the larger s is the larger the decrease. If s is large only center points obtain

high values, and if s = 0, all points of a section receive the same value.

4The inertia value can be seen as an \attractive potential" similar to arti�cial potentials for

obstacle avoidance [Khatib 1986], [Khosla and Volpe 1988], [Hwang and Ahuja 1988].
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Figure 2.11: Skeletons found for a rectangle and a notched rectangle by SAT left
and SLS right. Observe that the skeleton is highly distorted by the presence of
the notch.

da

SL

da

D

Figure 2.12: De�nition of axis of inertia (see text for details).

2.5.2 The tolerated length

Figure 2.13 provides evidence that the curvature on a skeleton should depend on

the width of the shape. As mentioned above, the tolerated length T will be used to

evaluate the smoothness of a frame so that the curvature that is \tolerated" depends

on the width of the section allowing high curvature only on thin sections of the

shape. The skeleton inertia of a curve will be the sum of the inertia values \up to"

the tolerated length so that for a high tolerated length, i.e. low curvature, the sum

will include more terms and will be higher. The objective is that a curve that bends

into itself within a section of the shape has a point within the curve with 0 tolerated

length so that the inertia of the curve will not depend on the shape of the curve
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Figure 2.13: Left: A rectangle and a curve that would receive low inertia according
to Equation 1. Center: Evidence that the inertia value of a point should depend
on orientation. Right: Evidence that the tolerated curvature on a skeleton should
depend on the width of the shape.

beyond that point. In other words, T should be 0 when the radius of curvature of

the \potential" skeleton is smaller than the width of the shape at that point and a

positive value otherwise (with an increasing magnitude the smoother the curve is).

We de�ne the tolerated length T for a point with curvature of radius \rc" as:

T (p; �; rc) =
8<
: 0 if rc < R + r

rc(� � arccos( rc�(R+r)
rc

)) otherwise

If a curve has a point with a radius of curvature rc smaller than the width of the

shape its tolerated length will be 0 and this, as we will see, results in a non-optimal

curve5.

In this section we have introduced the inertia surfaces and the tolerated length.

In Section 2.7 we give a formal de�nition of inertia. Intuitively, the de�nition is such

that a curved frame of reference is a high, smooth, and long curve in the inertia

surfaces (where smoothness is de�ned based on the tolerated length). Our approach

is to associate a measure to any curve in the plane and to �nd the one that yields

the highest possible value. The inertia value will be used to ensure that curves close

to the center of large portions of the shape receive high values. The tolerated length

will be used to ensure that curves bending beyond the width of the shape receive low

5Because of this, if a simply connected closed curve has a radius of curvature lying fully inside

the curve then it will not be optimal. Unfortunately we have not been able to prove that any simply

connected closed curve has such a point nor that there is a curve with such a point.
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Figure 2.14: This Figure shows how the inertia surfaces are de�ned for a given
orientation �. The value for the surface at a point p is I(R; r). The function I or
inertia function is de�ned in the text. R = d(pl; pr)=2 and r = d(p; pc), where
pl and pr are the points of the contour that intersect with a straight line perpen-
dicular to � that goes through p at opposite directions and pc is the midpoint of
the interval between these two points. If there is more than one intersection along
one direction, then we use the nearest one. If there is no intersection at all, then
we give a preassigned value to the surface, 0 in the current implementation.

values. In the next section we will investigate how such a curve might be computed

in a general framework and in section 2.7 we will see how to include the inertia values

and the tolerated length in the computation, and what is the de�nition of the inertia

measure that results.

Figure 2.15: Plots of the inertia surfaces for a square for eight orientations
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2.6 A Network to Find Frame Curves

In the previous sections, we have presented the Inertia Surfaces and the Tolerated

Length. We concluded that skeletons could be de�ned as long and smooth curves

with optimal inertia and tolerated length. In the following sections we will derive a

class of dynamic programming algorithms6 that �nd curves in an arbitrary graph that

maximizes a certain quantity. We will apply these algorithms to �nding skeletons in

the inertia surfaces.

There has been some work which is relevant. [Mahoney 1987] showed that long

and smooth curves in binary images are salient in human perception even if they have

multiple gaps and are in the presence of other curves. [Sha'ashua and Ullman 1988]

devised a saliency measure and a dynamic programming algorithm that can �nd such

salient curves in a binary image (see also [Ullman 1976]). [Subirana-Vilanova 1990],

[Freeman 1992], [Spoerri 1991], [Sha'ashua and Ullman 1991] have presented schemes

which use a similar underlying dynamic programming algorithm.

However, all of the above schemes su�er from the same problem: the scheme has

an orientation dependency such that certain orientations are favored. This prob-

lem was �rst mentioned in [Subirana-Vilanova 1991], [Freeman 1992]. Here, we will

present a scheme which is not orientation dependent. In addition, our scheme per-

ceives grouping of curves in a way which is remarkably similar to that of humans.

In this section we will examine the basic dynamic programing algorithm in a

way geared toward demonstrating that the kind of measures that can be computed

with the network is remarkably limited. The actual proof of this will be given in

section 2.9.

We de�ne a directed graph with properties G = (V;E; PE; PJ ) as a graph with a

set of vertices V = fvig ; a set of edges E � fei;j = (vi; vj) j vi; vj 2 V g; a function

PE : E ! <m that assigns a vector ~pe of properties to each edge; and a function

PJ : J ! <n that assigns a vector ~pj of properties to each junction where a junction

is a pair of adjacent edges (i.e. any pair of edges that share exactly one vertex) and

J is the set of all junctions. We will refer to a curve in the graph as a sequence of

6See [Dreyfus 1965], [Gluss 1975] for an introduction to dynamic programming.
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connected edges. We assume that we have an inertia function S that associates a

positive integer S(C) with each curve C in the graph. This integer is the inertia

or inertia value of the curve. The inertia of a curve will be de�ned in terms of the

properties of the elements (vertices, edges, and junctions) of the curve.

We will devise an iterative computation that �nds for every point vi and each of

its connecting edges ei;j, the curve with the highest inertia. Such a curve will start

at the point vi with the orientation of the edge ei;j. This includes de�ning an inertia

function and a computation that will �nd the frame curves for that function, i.e.

those that have the highest values. The applications that will be shown here work

with a 2 dimensional grid. The vertices are the points in the grid and the edges the

elements that connect the di�erent points in the grid. The junctions will be used to

include in the inertia function properties of the shape of the curve, such as curvature.

The computation will be performed in a locally connected parallel network with

a processor pei;j for every edge ei;j. The processors corresponding to the incoming

edges of a given vertex will be connected to those corresponding to the connecting

edges at that vertex. We will design the iterative computation so that we know, at

iteration n and at each point, what the inertia of the optimum curve of lenght n

is. That is the curve with highest inertia among those of size n that start at any

given edge. This provides a constraint in the invariant of the algorithm that we are

seeking that will guide us to the �nal algorithm. In order for the computation to have

some computing power each processor pei;j must have at least one state variable that

we will denote as si;j. Since we want to know the highest inertia among all curves

of length n starting with any given edge, we will assume that, at iteration n, si;j

contains that value for the edge corresponding to si;j .

Observe that having only one variable looks like a big restriction, however, we

show in Section 2.9 that allowing more state variables does not add any power to the

possible functions that can be computed with this network.

Since the inertia of a curve is de�ned only by the properties of the elements in the

curve, it can not be in
uenced by properties of elements outside the curve. Therefore

the computation to be performed can be expressed as:
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si;j(n+ 1) = MAXfF(n+ 1; ~pe; ~pj; sj;k(n)) j (j; k) 2 Eg

si;j(0) = F(0; ~pe; ~pj ; 0) (2.2)

where F is the function that will be computed in every iteration and that will lead

to the computed total curved value. Observe that given F , the global inertia value
of any curve can be found by applying F recursively on the elements of the curve.

We are now interested in what types of functions S we can use and what type

of functions F are needed to compute them such that the value obtained in the

computation is the maximum for the resulting measure S. Using contradiction and

induction, we conclude that a function F will compute the highest inertia for all

possible graphs if and only if it is monotonically increasing in its last argument, i.e.

i�

8~p; x; y x < y �! F(~p; x) < F(~p; y); (2.3)

where ~p is used to abbreviate the �rst three arguments of F .

What type of functions F satisfy this condition? We expect them to behave

freely as ~p varies. And when sj;k varies, we expect F to change in the same direction

with an amount that depends on ~p. A simple way to ful�ll this condition is with the

following function:

F(~p; x) = f(~p) + g(x) � h(~p) (2:4)

where f , g and h are positive functions, and g is monotonically increasing.

We now know what type of function F we should use but we do not know what

type of measures we can compute. Let us start by looking at the inertia s1;2 that
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we would compute for a curve of length i. For simplicity we assume that g is the

identity function:

� Iter. 1: s1;2(1) = f( ~p1;2)

� Iter. 2: s1;2(2) = s1;2(1) + f( ~p2;3) � h( ~p1;2)

� Iter. 3: s1;2(3) = s1;2(2) + f( ~p3;4) � h( ~p1;2) � h( ~p2;3)

� Iter. 4: s1;2(4) = s1;2(3) + f( ~p4;5) � h( ~p1;2) � h( ~p2;3) � h( ~p3;4)
...

� Iter. i: s1;2(i) = s1;2(i � 1) + f( ~pi;i�1) � Qk=i�1
k=1 h( ~pk;k+1) =

Pl=i
l=1 f( ~pl;l�1) �Qk=l�1

k=1 h( ~pk;k+1).

At step n, the network will know about the \best" curve of length n starting

from any edge. By \best" we mean the one with the highest inertia. Recovering the

optimum curve from a given point can be done by tracing the links chosen by the

processors (using Equation 2.2).

2.7 Computing Curved Inertia Frames

In this section, we will show how the network de�ned in the previous section can be

used to �nd frames of reference using the inertia surfaces and the tolerated length as

de�ned in Section 2.5. A directed graph with properties that de�nes a useful network

for processing the image plane has one vertex for every pixel in the image and one

edge connecting it to each of its neighbors, thus yielding a locally connected parallel

network. This results in a network that has eight orientations per pixel.

The value computed is the sum of the f( ~pi;j)'s along the curve weighted by the

product of the h( ~pi;j)'s. Using 0 � h � 1 we can ensure that the total inertia will be

smaller than the sum of the f 's. One way of achieving this is by using h = 1=k or

h = exp (�k) and restricting k to be larger than 1. The f 's will then be a quantity

to be maximized and the k's a quantity to be minimized along the curve. In our
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skeleton network, f will be the inertia measure and k will depend on the tolerated

length and will account for the shape of the curve so that the inertia of a curve is

the sum of the inertia values along a curve weighted by a number that depends on

the overall smoothness of the curve. In particular, the functions f , g and h (see

Equation 2.4) are de�ned as:

� f(~p) = f(~pe) = I(R; r),

� g(x) = x

� and h(~p) = h(~pj) = �
lemt

�T ( ~pj) .

�, which we call the \circle constant", scales the tolerated length, and it was set to

4 in the current implementation (because 4 r�=2 is the length of the perimeter of a

circle - where r is the radius of the circle). �, which we call the \penetration factor",

was set to 0:5 (so that inertia values \half a circle" away get factored down by 0:5).

And lemt is the length of the corresponding element. Also, si;j(0) = 0 (because the

inertia of a skeleton of length 0 should be 0).

With this de�nition, the inertia assigned to a curve of length L is:

SL =
Pl=L

l=1 I( ~pl;l�1)
Qk=l�1
k=1 �

lemt
�T ( ~pk) =

Pl=i
l=1 I( ~pl;l�1)�

Pk=l�1
k=1

lemt
�T ( ~pk) ,

which is an approximation of the continuous value given in Equation 2.5 below

(see also Figure 2.16):

S(C) =
RL
0 I(l)�

R l
0

1
�T (t)dtdl (2:5)

Where SC is the inertia of a parameterized curve C(u), and I(u) and T (u) are
the inertia value and the tolerated length respectively at point u of the curve.

The obtained measure favors curves that lie in large and central areas of the shape

and that have a low overall internal curvature. The measure is bounded by the area
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Figure 2.16: De�nition of curved inertia used by current implementation of Curved
Inertia Frames (see text for details).

of the shape: a straight symmetry axis of a convex shape will have an inertia equal

to the area of the shape. In the next section we will present some results showing

the robustness of the scheme in the presence of noisy shapes.

Observe that if the tolerated length T (t) at one point C(t) is small then
R l
0

1
�T (t)dt

is large so that �
R l
0

1
�T (t)

dt
dl becomes small (since � < 1) and so does the inertia for

the curve SL. Thus, small values of � and � penalize curvature favoring smoother

curves.
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Figure 2.17: a) Rectangle. b) Skeleton sketch for the rectangle. Circles along the
contour indicate local maxima in the skeleton sketch. c) Skeleton sketch for the
rectangle for one particular orientation, vertical-down in this case. d) Most salient
curve. e) Most interesting point for the most salient curve.
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201z

Figure 2.18: Top: Four shapes: a notched square, a stamp, a J, and Mach's
demonstration. Second row: The most salient curve found by the network for
each of them. Observe that the scheme is remarkably stable under noisy or bent
shapes. Third row: The most salient curve starting inside the shown circles. For
the J shape the curve shown is the most salient curve that is inside the shape.
Fourth row: The most interesting point according to the curves shown in the two
previous rows. See text for details.



2.8: Results and Applications 75

2.8 Results and Applications

In this section we will present some results and applications of the frame computation,

and in the following sections we will discuss the limitations of the skeleton network

and ways to overcome them.

The network described in the previous section has been implemented on a Con-

nection Machine and tested on a variety of images. As mentioned above, the imple-

mentation works in two stages. First, the distance to the nearest point of the shape

is computed at di�erent orientations all over the image so that the inertia surfaces

and the tolerated length can be computed; this requires a simple distance transform

of the image. In the second stage, the network described in section 2.7 computes

the inertia of the best curve starting at each point in the image. This is done at

eight orientations in our current implementation. The number of iterations needed

is bounded by the length of the longest optimal curve but in general a much smaller

number of iterations will su�ce. In all the examples shown in this Section the im-

ages were 128 by 128 pixels and 128 iterations were used. However, in most of the

examples, the results do not change after about 40 iterations. In general, the number

of iterations needed is bounded by the width of the shape measured in pixels.

2.8.1 The Skeleton Sketch and the highest inertia skeleton:

The skeleton sketch contains the inertia value for the most salient curve at each point.

The skeleton sketch is similar to the saliency map described in [Sha'ashua and Ullman

1988] and [Koch and Ullman 1985] because it provides a saliency measure at every

point in the image. It is also related to other image-based representations such as the

2 1/2D sketch [Marr 1982] or the 2-D Scale-Space Image [Saund 1990]. Figure 2.17

shows the skeleton sketch for a rectangle. The best skeleton can be found by tracing

the curve starting at the point having the highest skeleton inertia value. Figure 2.18

shows a few shapes and the most salient curve found by the network for each of

them. Observe that the algorithm is robust in the presence of non-smooth contours.

Given a region in the image we can �nd the best curve that starts in the region by

�nding the maxima of the skeleton sketch in the region, see Figure 2.18. In general,
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any local maximum in the skeleton sketch corresponds to a curve accounting for a

symmetry in the image. Local maxima in the shape itself are particularly interesting

since they correspond to features such as corners (See Figure 5.12).

2.8.2 The most \central" point:

In some vision tasks, besides being interested in �nding a salient skeleton, we are

interested in �nding a particular point related to the curve, shape, or image. This

can be due to a variety of reasons: because it de�nes a point in which to start

subsequent processing to the curve, or because it de�nes a particular place in which

to shift our window of attention. Di�erent points can be de�ned; the point with the

highest inertia is one of them, because it can locate relevant features such as corners.

Another interesting point in the image is the \most central" point in a curve

which can be de�ned by our scheme by looking for the inertia along the curve at

both directions within the curve. The most central point can be de�ned as the point

where these two values are \large and equal". The point that maximizes min(pl; pr)

has been used in the current implementation7. See Figure 2.18 for some examples.

Observe in Figure 2.18 that a given curve can have several central points due to

di�erent local maxima.

Similarly, the most central point in the image can be de�ned as the point that

maximizes min(pl; pr) for all orientations.

2.8.3 Shape description:

Each locally salient curve in the image corresponds to a symmetric region in one

portion of the scene. The selection of the set of most interesting frames corresponding

to the di�erent parts of the shape yields a part description of the scene. Doing this is

not trivial (See [Shashua and Ullman 1990]) because a salient curve is surrounded by

7See also [Reisfeld, Wolfson, and Yeshurun 1988] where a scheme to detect interest points was

presented. Their scheme is scale dependent contrary to C.I.F. which selects the larger structure as

the most interesting one, independently of the scale at which the scene is seen.
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Figure 2.19: Left: Skeleton Sketch for Mach's demonstration (Original image in
previous Figure top right). Center: Skeleton Sketch for one orientation only.
Right: Slice of the \one-orientation" Skeleton Sketch through one of the diagonals
of the image. Note that the values decrease across the gaps and increase inside
the square (see also [Palmer and Bucher 1981]).

other curves of similar inertia. In general, a curve displaced one pixel to the side from

the most salient curve will have an inertia value similar to that of the most salient one

and higher than that of other locally most salient curves. In order to inhibit these

curves, we color out from a locally maximal curve in perpendicular directions (to the

axis) to suppress parallel nearby curves. The amount to color can be determined

by the average width of the curve. Once nearby curves have been suppressed we

look for the next most salient curve and reiterate this process. Another approach

to �nding a group of several curves, not just one, is given in [Sha'ashua and Ullman

1990]. Both approaches su�er from the same problem: the groups obtained do not

optimize a simple global maximization function.

Figure 2.20 shows the skeleton found for an airplane. The skeleton can then be

used to �nd a part description of the shape in which each component of the frame

has di�erent elements associated that describe it: a set of contours from the shape,

an inertia measure re
ecting the relevance or saliency that the component has within

the shape, a central point, and a location within the shape.
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Figure 2.20: Top: Image; airplane portion enlarged; its edges; airplane without
short edges. Bottom: Vertical inertia surface; skeleton sketch; skeleton; most
salient point.

2.8.4 Inside/Outside:

The network can also be used to determine a continuous measure of inside-outside

[Shafrir 1985], [Ullman 1984] (see also [Subirana-Vilanova and Richards 1991], and

Appendices A and B. The distance from a point to the frame can be used as a measure

of how near the point is to the outside of the shape. This measure can be computed

using a scheme similar to the one used to inhibit nearby curves as described in the

previous paragraph: coloring out from the frame at perpendicular orientations, and

using the stage at which a point is colored as a measure of how far from the frame

the point is. The inertia of a curve provides a measure of the area swept by the curve

which can be used to scale the coloring process.
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2.9 Limitations of Dynamic Programming Ap-

proach

In this section we show that the set of possible inertia measures that can be computed

with the network de�ned in Section 2.6 is limited.

Proposition 1 The use of more than one state variable in the inertia network de-

�ned in section 2.6 does not increase the set of possible functions that can be optimized

with the network.

Proof: The notation used in the proof will be the one used in section 2.6. We

will do the proof for the case of two state variables; the generalization of the proof to

more state variables follows naturally. Each edge will have an inertia state variable

si;j, an auxiliary state variable ai;j, and two functions to update the state variables:

si;j(n+ 1) = MAXkF(~p; sj;k(n); aj;k(n))
and

ai;j(n+ 1) = G(~p; sj;k(n); aj;k(n)).

We will show that, for any pair of functions F and G, either they can be reduced to

one function or there is an initialization for which they do not compute the optimal

curves.

If F does not depend on its last argument aj;k, then the decision of what is the

most salient curve is not e�ected by the introduction of more state variables (so we

can do without them). Observe that we might still use the state variables to compute

additional properties of the most salient curve without e�ecting the actual shape of

the computed curve.

If F does depend on its last argument then there exists some ~p, x, y and w 2 <
such that:
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F(~p; y; x) < F(~p; y; w).

Assuming continuity, this implies that there exists some � > 0 such that:

F(~p; y � � ; x) < F(~p; y; w).

Assume now two curves of length n starting from the same edge ei;j such that

s1i;j(n) = y, a1i;j(n) = x, s2i;j(n) = y � � and a2i;j(n) = y. If the algorithm were

correct at iteration n it would have computed the values s1i;j(n) = y, a1i;j(n) = x

for the variables si;j and ai;j. But then at iteration n+1 the inertia value computed

for an edge eh;i would be sh;i = F(~p; y� � ; x) instead of F(~p; y; w) that corresponds
to a curve with a higher inertia value. 2

2.10 Non-Cartesian Networks

Figure 2.21: For the right-most three curves, curvature can be computed localy (it
is 0 everywhere). However, the curve on the left is a discretization on a cartesian
network of a line at about 60 degrees. Is also has a zero curvature but it can not
be computed localy since local estimates would be biased towards the network
orientations.

Straight lines that have an orientation di�erent from one of the eight network

orientations generate curvature impulses due to the discretization imposed on them,

essentially 45 or 90 degrees. Such impulses are generated in a number of pixels, per

unit length, which can be arbitrarily large depending on the resolution of the grid.

This results in a reduction of the inertia for such curves, biasing the network towards

certain orientations (see Figure 2.21).
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Cartesian networks such as these are used in most vision systems. They su�er

from three key problems:

� Orientations bias: Certain orientations are di�erent from the rest (typically 0,

+/- 45, and 90 degrees). This implies that the result of most schemes depends

on how the image array is aligned with the scene. This is also true for hexagonal

grids.

� Length bias: Segments at 45 degrees have a longer length than the others.

� Uniform distribution: All areas of the visual array receive an equal amount of

processing power.

To prevent the orientation bias, and as mentioned above, we made an implemen-

tation of the network that included a smoothing term that enabled the processors

to change their \orientation" at each iteration instead of keeping only one of the

eight initial orientations. At each iteration, the new orientation is computed by

looking at nearby pixels of the curve which lie on a straight line (so that curvature

is minimized). This increases the resolution but requires aditional state variables to

memorize the orientation of the computed curve.

This allows greater 
exibility but at the expense of breaking the optimization

relation shown in Equation 2.3 (since additional state variables are used). Note

that the value computed for the obtained curve corresponds to its true value. How-

ever, the obtained curve is not guaranteed to be the optimum. A similar problem

is encountered with the smoothing terms used by [Sha'ashua and Ullman 1988],

[Subirana-Vilanova 1990], [Spoerri 1990], [Subirana-Vilanova and Sung 1992], and

[Freeman 1992].

One possible solution to this problem is to change the topology of the network

(a key insight of this thesis!). Figure 2.22 presents an example in which the network

is distributed at di�erent orientations. This solves the orientation problem. If pro-

cessors are placed with a �xed given size, then the size bias is also solved. However,

constant size would result in few intersections (if any). The number of intersections

can be increased by relaxing the size requirement.
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Another solution is the use of random networks as shown in Figure 2.23. The

surprising �nding is that the corresponding implementation on a SPARC 10 is about

50 times faster than the CM-2 implementation presented in this thesis. Some results

are presented in Figures 2.24, 2.25, and 2.26.

By allowing processors to vary their width 20 %, the expected number of inter-

sections across lines is 1/5 the number of lines. The expected distance between an

arbitrary line and the closest network line can also be estimated easily using polar

coordinates.

In addition, lines can be concentrated in a certain region (or focus of attention)

whose shape may be tuned to the expected scene (e.g. dynamic programming on a

combination of circles and lines)8.

2.11 Review

In this Chapter we have presented C.I.F. (Curved Inertia Frames), a novel scheme to

compute curved symmetry axes. The scheme can recover provably global and curve

axis and is based on novel non-cartesian networks.

In the next Chapter we will show how C.I.F. can be used to work directly in the

image (without edges). The extension is based on a multi-scale vector ridge detector

that computes tolerated length and inertia values directly for the image (i.e. without

the need for discontinuities and distance transforms).

8We are currently working on extending these ideas together with S. Casadei [Subirana-Vilanova

and Casadei 1993].
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P

Layers 1, 19

Layers 2, 20

Layers 3, 21

Layers 4, 22

Layers 5, 23

Layers 6, 24

Layers 7, 25

Layers 18, 36

Figure 2.22: Left: The network outlined in this Figure avoids smoothing problems
because all the elements have the same length and because it has many orienta-
tions. Right: The connectivity among processors is determined by connecting all
processors that fall within a certain cylinder as depicted in this diagram.
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Figure 2.23: Random networks have not been used in vision and provide an elegant
and e�cient solution to local smoothing problems.
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Figure 2.24: The continuous line in this drawing is the one used in the experiment
reported in Figure 2.25. The squares show the discretization grid used. As can be seen,
the inertia value resolution is low. In fact the pixel distance along the best skeleton's
path is at most 5! The rest of the Figure shows part of the interface used in the random
network simulator.
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Figure 2.25: Top: Drawings. Right: Best skeleton obtained with SPARC simulation of
1600 line random network. Initialization was performed with only 32 pixels as shown
in Figure 2.24. The processor size is 1/32 of the image's width. In all cases, the best
solution was obtained after no more than 20 iterations.
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Figure 2.26: First row: Drawings of 
ower and newt. Second row: Best skeleton com-
puted by C.I.F. The random network used had 128 pixels in the initialization stage, and
2400 lines in the 
ower and 3200 lines in the newt. Third row: The skeleton sketch has
been used to �nd a complete description of the object. New optimal skeletons have been
computed among those in regions without skeletons. This process has been repeated
until there were no empty regions left inside the shape.



88 Chapter 2: Elongated Flexible Objects



Non-Rigid Perceptual

Organization Without Edges

Chapter 3

3.1 Introduction

In this chapter we continue the study of computations that can recover axes for mid-

level vision and unbending elongated and 
exible shapes. In Chapter 2 we presented

a version of Curved Inertia Frames (C.I.F.) that works on the edges or discontinuities

of a shape. In this chapter we will show how the robustness of Curved Inertia Frames

can be increased by incorporating information taken directly from the image. This

also means that C.I.F. will be able to compute several mid-level properties without

the need of explicitly computing discontinuities.

image

edges

grouping &
recognition

image

edges, "early vision"
     & recognition

grouping & focus
     of attention

Figure 3.1: Two di�erent views on the role of perceptual organization.

89
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Recent work in computer vision has emphasized the role of edge detection and

discontinuities in perceptual organization (and recognition). This line of research

stresses that edge detection should be done at an early stage on a brightness repre-

sentation of the image, and segmentation and other early vision modules computed

later on (see Figure 3.1 left). We (like some others) argue against such an approach

and present a scheme that segments an image without �nding brightness, texture,

or color edges (see Figure 3.1 right). In our scheme, C.I.F., discontinuities and a po-

tential focus of attention for subsequent processing are found as a byproduct of the

perceptual organization process which is based on a novel ridge detector introduced

in this Chapter.

Segmentation without edges is not new. Previous approaches fall into two classes.

Algorithms in the �rst class are based on coloring or region growing [Hanson and

Riseman 1978], [Horowitz and Pavlidis 1974], [Haralick and Shapiro 1985], [Clements

1991]. These schemes proceed by laying a few \seeds" in the image and then \grow"

these until a complete region is found. The growing is done using a local thresh-

old function, i.e. decisions are made based on local neighborhoods. This results in

schemes limited in two ways: �rst, the growing function does not incorporate global

factors, resulting in fragmented regions (see Figure 3.2). Second, there is no way to

incorporate a priori knowledge of the shapes that we are looking for. Indeed, im-

portant Gestalt principles such as symmetry, convexity and proximity (extensively

used by current grouping algorithms) have not been incorporated in coloring algo-

rithms. These principles are useful heuristics to aid grouping processes and are often

su�cient to disambiguate between alternative interpretations. In this chapter, we

present a non-local perceptual organization scheme that uses no edges and that em-

bodies these gestalt principles. It is for this reason that our scheme overcomes some

of the problems with region growing schemes { mainly the fragmenting of regions

and the merging of overlapping regions with similar region properties.

The second class of segmentation schemes which work without edges is based

on computations that �nd discontinuities while preserving some region properties

such as smoothness or other physical approximations [Geman and Geman 1984],

[Terzopoulos 86], [Blake and Zisserman 1987], [Hurlbert and Poggio 1988], [Poggio,

Gamble and Little 1988], [Trytten and T�uceryan 1990], [Zerubia and Geiger 1991].

These schemes are scale dependent and in some instances depend on reliable edge
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Figure 3.2: (From top-left to bottom right) 1: Full shirt image. 2: Canny edges.
3: Color edges. 4: An image of a shirt. 5: Original seeds for a region growing
segmentation algorithm. 6: Final segmentation obtained using a region growing
algorithm.

detection to estimate the location of discontinuities. Scale at the discontinuity level

has been addressed previously [Witkin 1983], [Koenderink 1984], [Perona and Malik

1990], but these schemes do not explicitly represent regions; often, meaningful regions

are not fully enclosed by the obtained discontinuities. As with the previous class, all

these algorithms do not embody any of the Gestalt principles and in addition perform

poorly when there is a nonzero gradient inside a region. The scheme presented in

this Chapter performs perceptual organization (see above) and addresses scale by

computing the largest scale at which a structure (not necessarily a discontinuity)

can be found in the image.

3.2 In Favor of Regions

What is an edge? Unfortunately there is no agreed de�nition of it. An edge



92 Chapter 3: Non-Rigid Perceptual Organization Without Edges

Figure 3.3: Left: Model of an edge. Right: Model of a ridge or box. Are these
appropriate?

Figure 3.4: Left: Zero-crossings. Right: Sign bit. Which one of these is harder to
recognize? (Taken from [Marr and Hildreth 1980]).

can be de�ned in several related ways: as a discontinuity in a certain property1,

as "something" that looks like a step edge (e.g. [Canny 1986] - see Figure 3.3)

and by an algorithm (e.g. zero-crossings [Marr and Hildreth 1980], optical �ltering

[Vallmitjana, Bertomeu, Juvells, Bosch and Campos 1988]). Characterizing edges

has proven to be di�cult especially near corners, junctions2, [Cheng and Hsu 1988],

[Beymer 1991], [Giraudon and Deriche 1991], [Korn 1988], [Noble 1988], [Gennert

1986], [Singh and Shneier 1990], [Medioni and Yasumoto 1987], [Harris and Stephens

1988] and when the image contains noise, transparent surfaces, edges at multiple

scales, or edges di�erent than step edges (e.g. roof edges) [Horn 1977], [Ponce and

Brady 1985], [Forsyth and Zisserman 1989], [Perona and Malik 1990].

What is a region? Problems similar to those encountered in the de�nition of

an edge are found when attempting to de�ne regions. Roughly speaking, an image

region is a collection of pixels sharing a common property. In this context, an edge

is the border of a region. How can we �nd regions in images? We could proceed in a

way similar to that used with edges, so that a region is de�ned (in one dimension) as

1Note that, strictly speaking, there are no discontinuities in a properly sampled image (or that

they are present at every pixel)
2Junctions are critical for most edge-labeling schemes which do not tolerate robustly missing

junctions.
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a structure that looks like a box (see Figure 3.3). However, this su�ers from problems

similar to the ones mentioned for edges.

Thus, regions and edges are two closely related concepts. It is unclear how we

should represent the information contained in an image. As regions? As edges?

Most people would agree that a central problem in visual perception is �nding the

objects or structures of interest in an image. These can be de�ned sometimes by their

boundaries, i.e. by identifying the relevant edges in an edge-based representation.

However, consider now a situation in which you have a transparent surface as when

hair occludes a face, when the windshield in your car is dirty, or when you are looking

for an animal inside the forest. An edge-based representation does not deal with this

case well, because the region of interest is not well de�ned by the discontinuities in

the scene but by the perceived discontinuities. This re
ects an object-based view of

the world. Instead, a region-based representation is adequate to represent the data

in such an image.

Furthermore, independently of how we choose to represent our data, which struc-

tures should we recover �rst? Edges or regions? Here are four reasons why exploring

the computation of regions (without edges) may be a promising approach:

3.2.1 Human perception

There is some psychological evidence that humans can recognize images with region

information better than they recognize line drawings [Cavanaugh 1991]. However,

there is not a clear consensus [Ryan and Schwartz 1956], [Biederman and Ju 1988]

(see also Figure 3.4).

3.2.2 Perceptual organization

Recent progress in rigid-object recognition has lead to schemes that perform re-

markably better than humans for limited libraries of models. The computational

complexity of these schemes depends critically on the number of \features" used for

matching. Therefore, the choice of features is an important issue. A simple feature
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that has been used is a point of an edge. This has the problem that, typically,

there are many such features and they are not su�ciently distinctive for recogni-

tion thereby increasing the complexity of the search process. Complexity can be

reduced by grouping these features into lines [Grimson 1990]. Lines in this context

are a form of grouping. This idea has been pushed further and several schemes ex-

ist that try to group edge segments that come from the same object. The general

idea underlying grouping is that \group features" are more distinctive and occur

less frequently than individual features [Marroquin 1976], [Witkin and Tenenbaum

1983], [Mahoney 1985], [Lowe 1984, 1987], [Sha'ashua and Ullman 1988], [Jacobs

1989], [Grimson 1990], [Subirana-Vilanova 1990], [Clemens 1991], [Mahoney 1992],

[Mahoney 1992b], [Mahmood 1993]. This has the e�ect of simplifying the complex-

ity of the search space. However, even in this domain where existing perceptual

organization has found use, complexity still limits the realistic number of models

that can be handled. \Additional" groups obtained with region-based computations

should be welcomed.

Representations which maintain some region information such as the sign-bit of

the zero-crossings (instead of just the zero-crossings themselves) can be used for

perceptual organization. One property that is easy to recover locally in the sign-bit

image shown in Figure 3.4 is that of membership in the foreground (or background)

of a certain portion of the image since a simple rule can be used: The foreground is

black and the background white. (This rule can not be applied in general, however

it illustrates how the coloring provided by the sign-bit image can be used to obtain

region information.) In the edge image, this information is available but can not be

computed locally. The region-based version of C.I.F. presented in this Chapter uses,

to a certain extent, a similar principle to the one we have just discussed - namely,

that often regions of interest have uniform properties (similar brightness, texture,

etc.).

3.2.3 Non-rigid objects

Previous research on recognition has focused on rigid objects. In such a domain,

one of the most useful constraints is that the image's change in appearance can be
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attributable mainly to a change in viewing position and luminance geometry3. It has

been shown that this implies that the correspondence of a few features constrains

the viewpoint (so that pose can be easily veri�ed). Therefore, for rigid-objects, edge-

based segmentation schemes which look for small groups of features that come from

one object are su�cient. Since cameras introduce noise and edge-detectors fail to �nd

some edges, the emphasis has been on making these schemes as robust as possible

under spurious data and occlusion.

In contrast, not much research has been addressed to non-rigid objects where,

as mentioned in Chapter 1, the change in appearance cannot be attributable solely

to a change in viewing direction. Internal changes of the shape must be taken into

account. Therefore, grouping a small subset of image features is not su�cient to

recover the object's pose. A di�erent form of grouping that can group all (or most

of) the object's features is necessary. Even after extensive research on perceptual

organization, there are no edge-based schemes that work in this domain (see also

the next subsection). This may not be just a limitation on our understanding of the

problem but a constraint imposed by the input used by such schemes. The use of

more information, not just the edges, may simplify the problem. One of the goals

of our research is to develop a scheme that can group features of a 
exible object

under a variety of settings that are robust under changes in illumination. Occlusion

and spurious data should also be considered, but they are not the main driver of our

research.

3.2.4 Stability and scale

In most images, interesting structures in di�erent regions of the image occur at

di�erent scales. This is a problem for edge-based grouping because edge detectors

are notably sensitive to the \scale" at which they are applied. This presents two

problems for grouping schemes: it is not clear what is the scale at which to apply

edge detectors and, in some images, not all edges of an object appear accurately at

one single scale. Scale stability is in fact one of the most important sources of noise

and spurious data mentioned above.

3For polygonal shapes, in most applications luminance can be ignored if it is possible to recover

edges su�ciently accurately.
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Figure 3.5: Edges computed at six di�erent scales for 227X256 images. The
results are notably di�erent. Which scale is best? Top six: Image of a person;
scales 1, 2, 4, 8, 16, and 32. Note that some of the edges corresponding to the legs
are never found. Bottom six: Blob image; scales 4, 8, 16, 32, 64, and 128. Note
also that the scales in the two images do not correspond.
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Consider for example Figure 3.5 where we have presented the edges of a person at

di�erent scales. Note that there is no single scale where the silhouette of the person

is not broken. For the purposes of recognition, the interesting edges are obviously the

ones corresponding to the object of interest. Determining the scale at which these

appear is not a trivial task. In fact, some edges do not even appear in any scale (e.g.

the knee in Figure 3.5).

This problem has been addressed in the past [Zhong and Mallat 1990], [Lu and

Jain 1989], [Clark 1988], [Geiger and Poggio 1987], [Schunck 1987], [Perona and

Malik 1987], [Zhuang, Huang and Chen 1986], [Canny 1985], [Witkin 1984], but edge

detection has treated scale as an isolated issue, independent of the other edges that

may be involved in the object of interest. We believe that the stability and scale of

the edges should depend on the region to which they belong and not solely on the

discontinuity that gives rise to them. The scheme that we will present looks for the

objects directly, not just for the individual edges. This means that in our research

we address stability in terms of objects (not edges). In fact, our scheme commits to

a scale which varies through the image; usually it varies also within the object. This

scale corresponds to that of the object of interest chosen by our scheme.

3.3 Color, Brightness, Or Texture?

Early vision schemes can be divided based on the type of information that they use

such as brightness, color, texture, motion, stereo. Similarly, one can design region-

based schemes that use any of these sources of information. We decided to extend

C.I.F. it to color �rst, without texture or brightness.

Color based perceptual organization (without the use of other cues) is indeed pos-

sible for humans since two adjacent untextured surfaces viewed under iso-luminant

conditions can be segmented4. In addition, color may be necessary even if there are

brightness changes since most scenes contain iso-luminant portions. As we will see

later in the chapter, color is interesting because (like color and texture) it can be

4However, the human visual system has certain limitations in iso-luminant displays (e.g. [Ca-

vanaugh 1987]).
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casted as a vector property. Most schemes that work on brightness images do not

extend naturally to vector properties. In contrast, vector ridge-detector techniques

should be applicable to color, motion and texture.

3.4 A Color Di�erence Measure

Under normal conditions, color is a perceived property of a surface that depends

mostly upon surface spectral re
ectance and very little on the spectral characteris-

tics of the light entering our eyes. It is therefore useful for describing the material

composition of a surface (independently of its shape and imaging geometry) [Rubin

and Richards 1981]. Lambertian color is indeed uniform over most untextured phys-

ical surfaces, and is stable in shadows and under changes in the surface orientation

or the imaging geometry. In general, it is more stable than texture or brightness. It

has long been known that the perceived color (or intensity) at any given image point

depends on the light re
ected from the various parts of the image, and not only on

the light at that point. This is known as the simultaneous-contrast phenomena and

has been known at least since E. Mach reported it at the beginning of the century.

[Marr 1982] suggests that such a strategy may be used because one way of achieving

some compensation for illuminance changes is by looking at di�erences rather than

absolute values. According to this view, a surface is yellow because it re
ects more

\yellow" light than a blue surface, and not because of the absolute amount of yellow

light re
ected (of which the blue surface may re
ect an arbitrary amount depending

on the incident light).

The exact algorithm by which humans compute perceived color is still unclear.

C.I.F. only requires a rough estimate of color which is used to segment the image,

see Figure 3.6. We believe perceived color should be computed at a later stage by

a process similar to the ones described in [Helson 1938], [Judd 1940], [Land and

McCann 1971]. This model is in line with the ones presented in Appendix B and

[Jepson and Richards 1991] which suggest that perceptual organization is a very early

process which precedes most early visual processing. In our images, color is entered

in the computer as a \color vector" with three components: the red, green, and blue

channels of the video signal. Our scheme works on color di�erences S
 between pairs
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Figure 3.6: The similarity measure described in Equation 1 is illustrated here for
an image of a person. Left: Image. Center: Similarity measure using as reference
color the color of the pixel located at the intersection of the two segments shown.
Right: Plot of the similarity measure along the long segment using the same
reference color.

of pixels ~c and ~cR. The di�erence that we used is de�ned in equation 3.1 and was

taken from [Sung 1991] (
 denotes the vector cross product operation) and responds

sensitively to color di�erences between similar colors.

S
(~c) = 1 � j~c
 ~cRj
j~cjj ~cRj (3:1)

This similarity measure is a decreasing function with respect to the angular color

di�erence. It assigns a maximumvalue of 1 to colors that are identical to the reference

\ridge color", ~cR, and a minimum value of 0 to colors that are orthogonal to ~cR in

the RGB vector space. The discriminability of this measure can be seen intuitively

by looking at the normalized image in Figure 3.6. The exact nature of this measure

is not critical to our algorithm. What is important is that when two adjacent objects

have di�erent "perceived" color (in the same background) this measure is positive5

Other measures have been proposed in the literature and most of them could be

incorporated in our scheme.

What most color similarity measures have in common is that they are based on

vector values and cannot be mapped onto a one-dimensional �eld [Judd and Wyszecki

75]6. This makes color perception di�erent from brightness from a computational

5Note that the perceived color similarity among arbitrary objects in the scene will obviously not

correspond to this measure. Especially if we do not take into account the simultaneous-contrast

phenomena.
6Note that using the three channels, red, green, and blue independently works for some cases.
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point of view since not all the one-dimensional techniques used in brightness images

extend naturally to higher dimensions.

3.5 Regions? What Regions?

In the last three sections we have set forth an ambitious goal: Develop a perceptual

organization scheme that works on the image itself, without edges and using color,

brightness, and texture information.

But what constitutes a good region? What \class" of regions ought to be found?

Our work is based on the observation that most objects in nature (or their parts)

have a common color or texture, and are long, wide, symmetric, and convex. This

hypothesis is hard to verify formally, but it is at least true for a collection of common

objects [Snodgrass and Vanderwart 1980] used in psychophysics. And as we will

show, it can be used in our scheme yielding seemingly useful results. In addition,

humans seem to organize the visual array using these heuristics as demonstrated by

the Gestalt Psychologists [Wertheimer 1923], [Ko�ka 1935], [K�ohler 1940]. In fact,

these principles were the starting point for much of the work in computer vision

on perceptual organization for rigid objects. We use these same principles but in a

di�erent way: Without edges and with non-rigid shapes in mind.

In the next section, we describe some common problems in �nding regions. To

do so, we introduce a one dimensional version of "regions" and discuss the problems

involved in this simpli�ed version of the task. A scheme to solve the one dimen-

sional version of the problem is discussed in Sections 3.7 and 3.8. This exercise is

useful because both the problems and the solution encountered generalize to the two

dimensional version, which is based on an extension of C.I.F..

However, it is possible to construct cases in which it does not, as when an object has two disconti-

nuities, one in the red channel only and the other in one of the other two channels only. In addition,

the perceived similarity is not well captured by the information contained in the individual channels

alone but on the combined measure.
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3.6 Problems in Finding Brightness Ridges

One way of simplifying perceptual organization is to start by looking at a one di-

mensional version of the problem. This is especially useful if the solution lends itself

to a generalized scheme for the two dimensional problem. This would be a similar

path to the one followed by most edge detection research. In the case of edge detec-

tion, a common one-dimensional version of the problem is a step function (as shown

in Figure 3.3). Similarly, perceptual organization without edges can be cast in one

dimension, as the problem of �nding ridges similar to a hat (as shown in Figure 3.3).

A hat is a good model because it has one of the basic properties of a region: it is

uniform and has discontinuities in its border. As we will see shortly, the hat model

needs to be modi�ed before it can re
ect all the properties of regions that interest

us.

In other words, the one-dimensional version of the problem that we are trying to

solve is to locate ridges in a one-dimensional signal. By ridge we mean something

that "looks like" a pair of step edges (see Figure 3.3). A simple-minded approach is

to �nd the edges in the image, and then look for the center of the two edges. This was

the approach suggested at the beginning of this Chapter [Subirana-Vilanova 1990].

Another possibility is to design a �lter to detect such a structure as in [Canny 1985],

[Kass and Witkin 1988], [Noble 1988].

However, the use of such �lters as estimators for ridge detection su�ers from a

number of problems. These problems are not particular to either scheme, but are

linked to the nature of ridges in real images7. The model of a ridge used in these

schemes is similar to the hat model shown in Figure 3.3. This is a limited model

since ridges in images are not well suited to it. Perhaps the most obvious reason why

such a model is not realistic is the fact that it is tuned to a particular scale, while,

in most images, ridges appear at multiple and unpredictable scales. This is not so

much of a problem in edge-detection as we have discussed in the previous sections,

because the edges of a wide range of images can be assumed to have \a very similar

scale." Thus, Canny's ridge detector works only on images where all ridges are of the

same scale as is true in the text images shown in [Canny 1983] (see also Figures 3.17

7In fact, most of these problems are similar for color and for brightness images.
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Figure 3.7: Left: Plot with multiple steps. A ridge detector should detect three
ridges. Right: Plot with narrow valleys. A ridge detector should be able to detect
the di�erent lobes independently of the size of the neighboring lobes.

and 3.18).

Therefore, an important feature of a ridge detector is its scale invariance. We

now summarize a number of important features that a ridge operator should have

(see Figure 3.7):

� Scale: See previous paragraph.

� Non-edgeness: The �lter should give no response for a step edge. This property

is violated by [Canny 1985], [Kass and Witkin 1988].

� Multiple steps: The �lter should also detect regions between small steps. These

are frequent in images, for example when an object is occluding the space

between two other objects. This complicates matters in color images because

the surfaces are de�ned by vectors not just scalar values.

� Narrow valleys: The operator should also work in the presence of multiple

ridges even if they are separated by small valleys.

� Noise: As with any operator that is to work in real images, tolerance to noise

is a critical factor.

� Localization: The ridge-detector output should be higher in the middle of the

ridge than on the sides.

� Strength: The strength of the response should be somehow correlated with the

strength of the perception of the ridge by humans.
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� Large scales: Large scales should receive higher response. This is a property

used by C.I.F. and it is important because it embodies the preference for large

objects (see also Section 14).

3.7 A Color Ridge Detector

In the previous section we have outlined a number of properties we would like a ridge-

detector to have. As we have mentioned, the ridge-detectors of Canny, and Kass and

Witkin fail because, among other things, they cannot handle multiple scales. A

naive way of solving the scale problem would be to apply such ridge detectors at

multiple scales and de�ne, the output of the �lter at each point, as the response at

the scale which yields a maximum value at that point. This �lter would work in a

number of situations but has the problem of giving a response for step edges (since

the ridge-detector at any single scale responds to edges, so will the combined �lter -

see Figures 3.17 and 3.18).

One can suppress the response to edges by splitting Canny's ridge operator into

two pieces, one for each edge, and then combining the two responses by looking at

the minimum of the two. This is the basic idea behind our approach (see Figures 3.8

and 3.9). Figures 3.17 and 3.18 illustrate how our �lter behaves according to the

di�erent criteria outlined before. The Figures also compare our �lter with that of

the second derivative of a gaussian, which is a close approximation of the ridge-�lter

Canny used. There are a number of potential candidates within this framework

such as splitting a Canny �lter by half, using two edge detectors and many others.

We tried a number of possibilities on the Connection Machine using a real and a

synthetic image with varying degrees of noise. Table 3.7 describes the �lter which

gives a response most similar to the inertia values and the tolerated length that

one would obtain using similar formulas for the corresponding edges, as described

in Chapter 2 [Subirana-Vilanova 1990]. The validity of this approach is further

con�rmed by analytical results presented in Section 3.8.

This approach uses two �lters (see pro�les in Figure 3.8, 3.9 and Table 3.1), each

of which looks at one side of the ridge. The output of the combined �lter is the
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VAR. EXPRESSION DESCRIPTION

Pmax Free Parameter (3) Gradient penalization coe�.
Fs Free Parameter (8) Filter Side Lobe size coe�.
Fc Free Parameter (1/8) Local Neighborhood size coe�.
g(x) Color gradient at location x.
gmax Max. color gradient in image.
� Size of Main Filter Lobe.
�s �=Fs Size of Side Filter Lobe.
�c Fc� Reference Color Neighborhood

~c(x) [R(x) G(x) B(x)]T Color vector at location x.
~cn(x) ~c(x)=j~c(x)j Normalized Color at x.

~cr(x)
R �c
��c

1p
2��c

e
� r2

2�2c ~cn(x+ r) dr Reference Color at x

r+�

�2
p
2�

e�
(r+�)2

2�2 �� < r < �

FL(r)
r+�

�2s
p
2�

e
� (r+�)2

2�2s �(� + 2�s) < r < �� Left Half of Filter

0 otherwise

FR(r) FL(�r) Right Half of Filter

IL(x)
R �
�(�+�s)S
(~cr(x);~cn(x+ r))FL(r) dr Inertia from Left Half

IR(x)
R �+�s
�� S
(~cr(x);~cn(x+ r))FR(r) dr Inertia from Right Half

I�(x) min(IL(x);IR(x))
p
�

(1+Pmax
g(x)

gmax
)2

Inertia at location x (Scale �).

I(x) 8� max(I�(x)) Overall inertia at location x.
�(max) � such that I�(x) is maximized

TL(x) 0 if rc < �(max) Tolerated Length

rc(� � arccos(rc��(max)
rc

)) otherwise (Depends on radius of curvature rc)

Table 3.1: Steps for Computing Directional Inertias and Tolerated Length. Note
that the scale � is not a free parameter.



3.7: A Color Ridge Detector 105

Figure 3.8: Left: Gaussian second derivative, an approximation of Canny's opti-
mal ridge detector. Right: Individual one-dimensional masks used by our operator.

Signal

Profile of left
half of filter

Profile of right
half of filter

Output from left
half (abs. value)

Output from right
half (abs. value)

Shifted response

Minimum of two
halfs divided by
the gradient is the
output of the single-
scale filter

Ridge Edge

Figure 3.9: Intuitive description of ridge detector output on 
at ridge and edge.
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minimum of the two responses. Each of the two parts of the �lter is asymmetrical,

re
ecting the fact that we expect the object to be uniform (which explains each

�lter's large central lobe), and that we do not expect that a region of equal size be

adjacent to the object (which explains each �lter's small side lobe to accomodate for

narrower adjacent regions). In other words, our ridge detector is designed to handle

narrow valleys.

The extension to handling steps and color is tricky because there is no clear notion

of what is positive and what is negative in vector quantities. We solve this problem

by adaptively de�ning a reference color at each point as the weighted average color

over a small neighborhood of the point (about eight times smaller than the scale of

the �lter, in the current implementation). Thus, this reference color will be di�erent

for di�erent points in the image, and scalar deviations from the reference color are

computed as de�ned in Section 3.3.

3.8 Filter Characteristics

This Section examines some interesting characteristics of our �lter under noiseless

and noisy operating conditions. We begin in Section 3.8.1 by deriving the �lter's

optimum scale response and its optimum scale map for noiseless ridge pro�les, from

which we see that both exhibit local output extrema at ridge centers. Next, we

examine our �lter's scale (Section 3.8.2) and spatial (Section 3.8.3) localization char-

acteristics under varying degrees of noise. Scale localization measures the closeness

in value between the optimum mask size at a ridge center and the actual width of

the ridge. Spatial localization measures the closeness in position between the �lter's

peak response location and the actual ridge center. We shall see that both the �lter's

optimum scale and peak response location remain remarkably stable even at notice-

ably high noise levels. Our analysis will conclude with a comparison with Canny's

ridge detector in Section 3.8.4 and experimental results in Section 3.9.

For simplicity, we shall perform our analysis on scalar ridge pro�les instead of

color ridge pro�les. The extension to color is straightforward if we think of the refer-

ence color notion and the color similarity measure of equation 3.1 as a transformation
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Figure 3.10: Half-mask con�gurations for computing the optimum scale ridge
response of our �lter. See text for explanation.

that converts color ridge pro�les into scalar ridge pro�les.

We shall be using �lter notations similar to those given in Table 3.7. In particular,

� denotes the main lobe's width (or scale); Fs denotes the �lter's main lobe to side

lobe width ratio; and FL(r; �m; �s) a left-half �lter with main lobe size �m, side lobe

size �s = �m=Fs, and whose form is a normalized combination of two Gaussian �rst

derivatives. At each point on a ridge pro�le, the �lter output, by de�nition, is the

maximum response for mask pairs of all scales centered at that point.

3.8.1 Filter response and optimum scale

Let us �rst obtain the single scale �lter response for the two half-mask con�gurations

in Figure 3.10. Figure 3.10(a) shows an o�-center left half-mask whose side lobe

overlaps the ridge plateau by 0 � d � 2�=Fs and whose main lobe partly falls o�

the right edge of the ridge plateau by 0 � f � 2�. The output in terms of mask

dimensions and o�set parameters is:

Oa(d; f) =
Z �(�+d)
�(�+ 2�

Fs
)
sFL(r; �;

�

Fs

)dr +
Z ��f

�(�+d)
FL(r; �;

�

Fs

)dr +
Z �

��f
sFL(r; �;

�

Fs

)dr
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Figure 3.11: Mask pair con�guration for computing the all scales optimum ridge
response of our �lter. See text for explanation.

=
1p
2�

h
(Fss� 1)(e�2 � 1)

�(1� s)

 
Fs(1� e�

F2s d
2

2�2 ) + (e�
(2��f)2

2�2 � e�2)

!#
(3.2)

A value of f greater than d indicates that the �lter's main lobe (i.e. its scale)

is wider than the ridge and vice-versa. Notice that when d = f = 0, we have a

perfectly centered mask whose main lobe width equals the ridge width, and whose

output value is globally maximum.

Figure 3.10(b) shows another possible left half-mask con�guration in which the

main lobe partly falls outside the left edge of the ridge plateau by 0 � f � 2�. Its

output is:

Ob(f) =
Z �(��f)
�(�+ 2�

Fs
)
sFL(r; �;

�

Fs

)dr +
Z �

�(��d)
FL(r; �;

�

Fs

)dr

=
1p
2�

�
(Fss� 1)(e�2 � 1)� (1 � s)(1 � e�

f2

2�2 )
�

(3.3)

The equivalent right-half mask con�gurations are just mirror images of the two left-

half mask con�gurations, and have similar single scale ridge response values.

Consider now the all scales optimum �lter response of a mask pair, o�set by h
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from the center of a ridge pro�le (see Figure 3.11). The values of d and f in the

�gure can be expressed in terms of the ridge radius (R), the �lter size (�) and the

o�set distance (h) as follows:

d = R+ h� �

f = � + h�R

Notice that the right-half mask con�guration in Figure 3.11 is exactly the mirror

image of the left-half mask con�guration in Figure 3.10(a).

Because increasing � causes f to increase which in turn causes the left-half mask

output to decrease, while decreasing � causes d to increase which in turn causes the

right-half mask output to decrease, the all scales optimum �lter response, Opt(h;R),

must therefore be from the scale, �o, whose left and right half response values are

equal. Using the identities for d and f above with the half-mask response equa-

tions 3.2 and 3.3, we get, after some algebriac simpli�cation:

Opt(h;R) =
1p
2�

"
(Fss� 1)(e�2 � 1)� (1� s)(1� e

� (�o+h�R)
2

2�2o )

#
(3:4)

where the optimum scale, �o, must satisfy the following equality:

Fs(1� e
�F2s (R+h��o)

2

2�2o ) + (e
� (�o�h+R)

2

2�2o � e�2) = (1� e
� (�o+h�R)

2

2�2o ): (3:5)

The following bounds for �o can be obtained:

R + h

1 +
p
2

Fs
ln( Fs

Fs�1�e�2 )
< �o < (R+ h): (3:6)

For our particular implementation, we have Fs = 8 which gives us: 0:9737(R + h) <

�o < (R+ h). Since h � 0, Equation 3.6 indicates that the optimum �lter scale, �o,

is a local minimum at ridge centers where h = 0.
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To show that the all scales optimum �lter response is indeed a local maximum

at ridge centers, let us assume, using the inequality bounds in Equation 3.6, that

�o = k(R + h) for some �xed k in the range:

1

1 +
p
2

Fs
ln( Fs

Fs�1�e�2 )
< K < 1:

Equation 3.4 becomes:

Opt(h;R) =
1p
2�

"
(Fss� 1)(e�2 � 1) � (1 � s)(1� e

� ((1+k)h�(1�k)R)2

2k2(R+h)2 )

#
: (3:7)

Di�erentiating the above equation with respect to h, we see that Opt(h;R) indeed

decreases with increasing h for values of h near 0.

3.8.2 Scale localization

We shall approach the scale localization analysis as follows (see Figure 3.12(a)):

Consider a radius R ridge pro�le whose signal to noise ratio is (1�s)=no, where (1�s)
is the height of the ridge signal and n2o is the noise variance. Let d = jR � �oj be
the size di�erence between the ridge radius and the optimum �lter scale at the ridge

center. We want to obtain an estimate for the magnitude of d=R, which measures

the relative error in scale due to noise.

Figures 3.12(b) (c) and (d) show three possible left-half mask con�gurations

aligned with the ridge center. In the absence of noise (i.e. if no = 0), their re-

spective output values (Os) are:

(� = R) : Os =
Z ��
�(�+ 2�

Fs
)
sFL(r; �;

�

Fs

)dr +
Z �

��
FL(r; �;

�

Fs

)dr

=
1p
2�

(1� e�2)(1� sFs)
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Figure 3.12: Mask con�gurations for scale localization analysis. (a) A radius R
ridge pro�le with noise to signal ratio no=(1 � s). (b) A mask whose scale equals
the ridge dimension. (c) A mask whose scale is larger than the ridge dimension.
(d) A mask whose scale is smaller than the ridge dimension.
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��d
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2�

"
(1 � e�2)(1 � sFs) + (1 � s)Fs(e

� F2s d
2

2(R�d)2 � 1)

#
(3.8)

Let us now compute On, the noise component of the �lter output. Since the noise

signal is white and zero mean, we have E[On] = 0, where E[x] stands for the expected

value of x. For noise of variance n2o, the variance of On is:
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Var[On] =
Z �

�(�+ 2�
Fs

)
n2oF2

L(r; �;
�

Fs

)dr �
Z 1
�1

n2oF2
L(r; �;

�

Fs

)dr

=
1 + Fs

8�
p
�
� 1 + Fs

8R
p
�
; (3.9)

or equivalently, the standard deviation of On is:

SD[On] =

s
1 + Fs

8R
p
�
: (3:10)

A loose upper bound for d=R can be obtained by �nding d, such that the noiseless

response for a size � = R + d (or size � = R � d) mask is within one noise output

standard deviation of the optimum scale response (ie. the response for a mask of

size �o = R). We examine �rst, the case when � = R+ d. Subtracting Os for � = R

from Os(d) for � = R + d (both from the series of equations 3.8) and equating the

di�erence with SD[On], we get:

(1� s)(1� e�2 + e
� d2

2(R+d)2 � e�2e
2d
R+d e

� d2

2(R+d)2 ) =

s
1 + Fs

8R
p
�
;

which, after some algebra and simplifying approximations, becomes:

d=R �
p
2K

1�
p
2K

(0 � no

1� s
< (1� e�2)(1� e�

1
2 )

s
8R
p
�

1 + Fs

)

where : K = � ln

 
1� no

1� s

1

1 � e�2

s
1 + Fs

8R
p
�

!
: (3.11)

Figure 3.13(a) graphs d=R as a function of the noise to signal ratio no=(1 � s).

We remind the reader that our derivation is in fact a probabilistic upper bound for

d=R. For d=R to exceed the bound, the � = R + d �lter must actually produce a

combined signal and noise response, greater than that of all the other �lters with

sizes from � = R to � = R + d.
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Figure 3.13: Relative scale error (d=R) as a function of noise to signal ratio

(no=(1 � s)) for (a) Equation 3.11 where �o > R, and (b) Equation 3.12 where
�o < R. For both graphs, Fs = 8, top curve is for R = 10, middle curve is for
R = 30 and bottom curve is for R = 100.

A similar analysis for the � = R � d case yields (see Figure 3.13(b) for plot):

d=R �
p
2K

Fs +
p
2K

where : K = � ln

 
1� no

1� s

s
1 + Fs

8F 2
sR
p
�

!
: (3.12)

3.8.3 Spatial localization

Consider the radius R ridge in Figure 3.14 whose signal to noise ratio is (1�s)=no.
As before, (1� s) is the height of the ridge signal and n2o is the noise variance. Let h

be the distance between the actual ridge center and the peak location of the �lter's

all scales ridge response. Our goal is to establish some magnitude bound for h=R

that can be brought about by the given noise level.

To make our analysis feasible, let us assume, using Equation 3.6, that the op-

timum �lter scale at distance h from the ridge center is �o = R + h. Notice that

for our typical values of Fs, the uncertainty bounds for �o are relatively small. The

optimum scale �lter output without noise is therefore:
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Figure 3.14: Left: Mask con�gurations for scale localization analysis. An all
scales �lter response for a radiusR ridge pro�le with noise to signal ratio no=(1�s).
h is the distance between the actual ridge center and the �lter response peak
location. Right: Relative spatial error (h=R) as a function of noise to signal
ratio (no=(1 � s)), where Fs = 8, top curve is for R = 10, middle curve is for
R = 30 and bottom curve is for R = 100. See Equation 3.15.

Opt(h;R) � 1p
2�

"
(Fss� 1)(e�2 � 1)� (1� s)(1 � e

� 4h2

2(R+h)2 )

#
; (3:13)

and the di�erence in value between the above and the noiseless optimum scale output

at ridge center is:

Opt(0; R) � Opt(h;R) � (1� s)(1� e
� 4h2

2(R+h)2 ): (3:14)

As in the scale localization case, we obtain an estimate for h=R by �nding h such

that the di�erence in Equation 3.14 equals one noise output standard deviation of

the optimum scale �lter at ridge center (see Equation 3.10). We get:

(1� s)(1� e
� 4h2

2(R+h)2 ) = no

s
1 + Fs

8R
p
�
;

which eventually yields (see Figure 3.14 for plot):
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3.8.4 Scale and spatial localization characteristics of the Canny

ridge operator

We compared our �lter's scale and spatial localization characteristics with those of

a Canny ridge operator. This is a relevant comparison because the Canny ridge

operator was designed to be optimal for simple ridge pro�les (see [Canny 1985] for

details on the optimality criterion). The normalized form of Canny's ridge detector

can be approximated by the shape of a scaled Gaussian second derivative:

C(r; �) = 1p
2��3

(�2 � r2)e�
r2

2�2 : (3:16)

We begin with scale localization. For a noiseless ridge pro�le with radius R and

height (1 � s), the optimum scale (� = R) Canny �lter response at the ridge center

is:

Os(� = R) =

s
2

�
(1 � s)e�

1
2 : (3:17)

Similarly, the ridge center �lter response for a mismatched Canny mask (� = R+ d)

is:

Os(� = R + d) =

s
2

�

R

R+ d
(1� s)e

� R2

2(R+d)2 ;

where the scale di�erence, d, can be either positive or negative in value.

We want an estimate of d=R in terms of the noise to signal ratio. Consider now
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the e�ect of white Gaussian noise (zero mean and variance n2o) on the optimum scale

Canny �lter response. The noise output standard deviation is:

SD[On] =

sZ 1
�1

n2oC2(r; � = R)dr

= no

s
3

8R
p
�
: (3.18)

Performing the same scale localization steps as we did for our �lter, we get:

no

s
3

8R
p
�
=

s
2

�
e�

1
2 (1� s)�

s
2

�

R

R+ d
e
� R2

(R+d)2 (1 � s);

which reduces to the following equation that implicitly relates d=R to no
1�s :

no

1� s
=

s
16R

3
p
�

"
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1
2 � R

R + d
e
� R2

2(R+d)2

#
: (3:19)

For spatial localization, we want an estimate of h=R in terms of no
1�s , where h is

the distance between the actual ridge center and the all scales Canny operator peak

output location. At distance h from the ridge center, the optimum Canny mask scale

(�o) is bounded by:

vuuutR2 + h2 � 2Rh
1 � e

� 4Rh

2(R�h)2

1 + e
� 4Rh

2(R�h)2

� �o �

vuuutR2 + h2 � 2Rh
1 � e

� 4Rh

2(R+h)2

1 + e
� 4Rh

2(R+h)2

;

and the noiseless optimum scale �lter response is:

Os(h) =
2p
2��o

(1� s)e
�R2+h2

2�2o

"
R cosh(

Rh

�2o
)� h sinh(

Rh

�2o
)

#
:

Setting Os(0) � Os(h) = SD[On], we arrive at the following implicit equation

relating h=R and no=(1 � s):
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Figure 3.15: Comparison of relative scale error (d=R) as a function of noise to
signal ratio (no=(1 � s)) between our �lter (� > R case) and the Canny ridge
�lter. See Equations 3.11 and 3.19. Top Left: R = 10. Top Right: R = 30.
Bottom: R = 100. For each graph, curves from top to bottom are those of:
Fs = 16, Fs = 8, Fs = 4, Fs = 2, and Canny.
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where �o �
q
R2 + h2 � 2Rh(1 � e�

4Rh

2R2 )=(1 + e�
4Rh

2R2 ) (valid for small h=R values).

We see from Figures 3.15 and 3.16 that at typical Fs ratios, our �lter's scale

and spatial localization characteristics are comparable to those of the Canny ridge

operator.

3.9 Results

We have tested our scheme (�lter + network) extensively; Figures 3.17 and 3.18
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Figure 3.16: Comparison of relative spatial error (h=R) as a function of noise
to signal ratio (no=(1 � s)) between our �lter and the Canny ridge �lter. See
Equations 3.15 and 3.20. Top Left: R = 10. Top Right: R = 30. Bottom:

R = 100. For each graph, the Canny curve is the top curve between no=(1�s) = 0
and no=(1 � s) = 0:5. The other curves from top to bottom are for: Fs = 16,
Fs = 8, Fs = 4 and Fs = 2.
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Figure 3.17: First column: Di�erent input signals. Second column: Output given
by second derivative of the gaussian. Third column: Output given by second
derivative of the gaussian using reference color. Fourth column: Output given by
our ridge detector. The First, Second, Fourth and Sixth rows are results of a single
scale �lter application where � is tuned to the size of the largest ridge. The Third,
Fifth and Seventh rows are results of a multiple scale �lter application. Note that
no scale parameter is involved in any multiple-scale case.
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Figure 3.18: Comparing multiple scale �lter responses to color pro�les. Top: Hue
U channel of roof and sinusoid color pro�les. Bottom: Multi-scale output given by
color convolution of our non-linear mask with the color pro�les. Even though our
�lter was designed to detect 
at regions, it can also detect other types of regions.

Figure 3.19: First column: Multiple step input signal. Second column: Output
given by second derivative of the gaussian. Third column: Output given by second
derivative of the gaussian using reference color. Fourth column: Output given by
our ridge detector. The �rst row shows results of a single scale �lter application
where � is tuned to the size of the largest ridge. The second row shows results
of a multiple scale �lter application. Note that no scale parameter is involved in
multiple-scale case.
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Figure 3.20: Four images. Left to Right: Sweater image, Ribbons image, Person
image and Blob image. See inertia surfaces for these images in Figures 3.21 and
3.22 and the Canny edges at di�erent scales for the Person and Blob image in
Figure 3.5. Note that our scheme recovers the Person and blob at the right scale,
without the need of specifying the scale.
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Figure 3.21: Inertia surfaces for three images at four orientations (clockwise
12, 1:30, 3 and 4:30). Note that exactly the same lisp code (without changing
the parameters) was used for all the images. From Left to Right: Shirt image,
Ribbon image, Blob image.

show that our �lter produces sharper and more stable ridge responses than the second

derivative of a gaussian �lter, even when working with the notion of reference colors

for color ridge pro�les. First, our �lter localizes all the ridges for a single ridge, for

multiple or step ridges and for noisy ridges. The second derivative of the gaussian

instead fails under the presence of multiple or step ridges. Second, the scale chosen

by our operator matches the underlying data closely while the scale chosen by the

second derivative of the gaussian does not match the underlying data (see Figures

in Section 3.8). This is important because the scale is necessary to compute the

tolerated length which is used in the second stage of our scheme to �nd the Curved

Inertia Frames of the image. And third, our �lter does not respond to edges while

the second derivative of the gaussian does.

In the previous paragraph, we discussed the one-dimensional version of our �lter.

The same �lter can be used as a directional ridge operator for two-dimensional im-

ages. Figure 3.21 shows the directional output (a.k.a. inertia surfaces) of our �lter

on four images. The two-dimensional version of the �lter can be used with di�erent

degrees of elongation. In our experiments, we used one pixel width to study the

worst possible scenario. An elongated �lter would smooth existing noise; however,

large scales are not good because they smooth the response near discontinuities and

in curved areas of the shape (this can be overcome by using curved �lters [Malik and

Gigus 1991]).
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Figure 3.22: Inertia surfaces for the person image at four orientations. Note that
exactly the same lisp code (without changing the parameters) was used for these
images and the others shown in this Chapter.
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Figure 3.23: Most salient Curved Inertia Frame obtained in the shirt image.
Note that our scheme recovers the structures at the right scale, without the need
to change any parameters. Left: Edge map of shirt image without most salient
curved inertia frame. Right: With most salient curved inertia frame superimposed.

Figure 3.24: Blob with skeleton obtained using our scheme in the blob image.
Note that our scheme recovers the structures at the right scale, without the need
to change any parameters.



3.9: Results 125

Figure 3.25: Pant region obtained in person image. The white curve is the
Curved Inertia Frames from which the region was recovered.

The inertia surfaces and the tolerated length are the output of the �rst stage of

our scheme. In the second stage, we use these to compute the Curved Inertia Frames

(see Chapter 2) as shown in Figures 3.23, 3.24, 3.25, 3.26, and 3.27. These skeleton

representations are used to grow the corresponding regions by a simple region growing

process which starts at the skeleton and proceeds outward (this can be thought of as

a visual routine [Ullman 1984] operating on the output of the dynamic programming

stage or skeleton sketch). This process is stable because it can use global information

provided by the frame, such as the average color or the expected size of the enclosing

region. See Figures 3.23, 3.24, 3.25, 3.26, and 3.27 for some examples of the regions

that are obtained. Observe that the shapes of the regions are accurate, even at

corners and junctions. Note that each region can be seen as an individual test since

the computations performed within it are independent of those performed outside it.
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Figure 3.26: Four regions obtained for the person image. The white curves are
the Curved Inertia Frame from which the regions where recovered.
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Figure 3.27: Four other regions obtained for the person image. The white curves
are the Curved Inertia Frames from which the regions were recovered.
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Figure 3.28: This Figure illustrates how the scheme can be used to guide attention.
Top left: Close up image of face. Top center: Maximum inertia point. Top right:

Skeletal curve through face. Second row: Inertia map along entire skeletal curve
and along face.
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3.10 Discussion: Image Brightness Is Necessary

We have implemented our scheme for color segmentation on the Connection Machine.

The scheme can be extended naturally to brightness and texture (borrowing from

the now popular �lter-based approaches applied to the image, see [Knuttson and

Granlund 1983], [Turner 1986], [Fogel and Sagi 1989], [Malik and Perona 1989],

[Bovik, Clark and Geisler 1990], [Thau 1990]). The more cues a system uses, the

more robust it will be. In fact, image brightness is crucial in some situations because

luminance boundaries do not always come together with color boundaries (e.g. cast

shadows).

But, should these di�erent schemes be applied independently? Consider a situa-

tion in which a surface is de�ned by an iso-luminant color edge on one side and by a

brightness edge (which is not a color edge) on the other. This is in fact the case for

one of the shirt image's ribbons. Our scheme would not recover this surface because

the two sides of our �lter would fail (on one side for the brightness module and on

the other for the iso-luminant one). We believe that a combined �lter should be used

to obtain the inertia values and the tolerated length in this case. The second stage

would then be applied only to one set of values. Instead of having a �lter with two

sides, our new combined �lter should have four sides. Two responses on each side,

one for color Rc;i and one for brightness Rb;i, the combined response would then be:

min(max(Rb;left; Rc;left);max(Rb;right; Rc;right)).
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Contour Texture and Frame

Curves

Chapter 4

4.1 Introduction

Can we use Curved Inertia Frames and frame alignment to recognize contour textures

such as hair, waves, clouds, complex tools, and house ornaments? If so, how should

we change the scheme developed in Chapters 2 and 3? Our work is built on the

premise that two non-rigid objects may require di�erent recognition strategies. In

fact, we believe that a di�erent frame alignment technique is needed to recognize

contour textures.

This Chapter addresses contour textures and presents a �lter-based scheme to

recognize Contour Texture. The scheme can be seen as an instance of frame align-

ment, as described in Section 1.5 (see Figure 1.9), and a skeleton computation similar

to the one presented in Chapter 3 can still be used to recover the main axis of the

contour.

131
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4.2 Contour Texture and Non-Rigid Objects

Oak leaves are readily distinguished from other types of leaves (see Figure 4.1). The

ability to distinguish leaves can not be attributed solely to an exact shape property

since the leaf contours change signi�cantly from one leaf to another. Instead, another

property, more statistical in nature, must be used. We call this property contour

texture. Contour texture has not been studied extensively in the past and is the

subject of this Chapter. Most of the work has been on recognizing repetitive one

dimensional patterns that are fully connected [Granlund 1972], [Zahn and Roskies

1972], [Nahin 1974], [Richard and Hemami 1974], [Eccles and Mc Queen and Rosen

1977], [Giardina and Kuhl 1977], [Person and Foo 1977], [Wallace and Wintz 1980],

[Crimmins 1982], [Kuhl and Giardina 1982], [Etesami and Uicker 1985], [Persoon

and Fu 1986], [Strat 1990], [Van Otterloo 1991], [Dudek 1992], [Maeder 1992], [Uras

and Verry 1992]. We are interested in a more general description that does not

rely on connectivity. Lack of connectivity is very common for two reasons. First,

edge detectors often break contours and it is hard to recover a connected contour.

Second, some shapes such as trees or clouds do not have a well-de�ned contour but

a collection of them.

Contour texture is interesting because there are many non-rigid or complex ob-

jects with distinctive contour textures (such as clouds, trees, hair, and mountains)

and because images without contour texture appear less vivid and are harder (or

even impossible) to recognize (see cartoons in Figure 4.2). In fact, many non-rigid

objects have boundaries which can be described as contour textures. Rigid-object

recognition schemes do not handle contour textures because they rely on \exact"

shape properties. This does not occur in contour textures (or in other non-rigid

objects1) and alternative approaches for handling this case must be developed. In

addition, contour texture may help perceptual organization and indexing schemes

(see Figure 5.8).

Not all objects can be described just by their contour textures. Leaves are a

good example of this [Smith 1972]. In fact, botanists have divided leaves using two

1Contour texture is common in classi�cation problems; however, it is also common in recognition

problems where the shapes are complex such as in the skyline of a town.
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attributes one of which is based on contour texture (they use the term \leaf mar-

gin"). This attribute generates several classes such as dentate, denticulate, incised,

or serrulate. Botanists also use another attribute (called \leaf shape") which is com-

plementary to contour texture. Leaf shape categories include oval, ovate, cordate,

or falcate (see [Smith 1972] for a complete list). The distinction between contour

texture and shape is particularly important for deciding what type of representation

to use, a question which we will address in Section 4.5.

Since contour textures appear together with other non-rigid transformations, we

are particularly interested in �nding a useful and computable shape representation for

contour textures. If it is to be useful in a general purpose recognition system, such

a representation should support simultaneously recognition techniques for contour

texture and other non-rigid transformations. The �ndings presented in this Chapter

argue in favor of a two-level representation for contour textures such that one level,

which we call the frame curve, embodies the \overall shape" of the contour and the

other, the contour texture, embodies more detailed information about the boundary's

shape. These two levels correspond closely to the two attributes used to describe

leaves by botanists.

The notion of contour texture prompts several questions: Can we give a precise

de�nition of contour texture? What is the relation between two-dimensional texture

and contour texture? Is there a computationally-e�cient scheme for computing

contour texture? There are several factors that determine the contour texture of a

curve: for example, the number and shape of its protrusions. What other factors

in
uence the contour texture of a shape? In particular, does shape in
uence contour

texture?

In this Chapter we suggest a �lter-based model for contour texture recognition

and segmentation (Figure 5.8). The scheme may also be used for contour completion

(Figure 5.6), depth perception (Figure 5.5), and indexing (Figure 5.8). The rest of

the Chapter addresses these questions and is organized as follows: In Section 4.3 we

discuss the de�nition of contour texture and its relation to 2D texture. In Sections 4.4

and 4.5 we discuss the relation that contour texture has to scale and inside/outside

relations respectively. In Section 4.6 we present an implemented �lter-based scheme

for contour texture. In the next Chapter, we suggest an application for contour



134 Chapter 4: Contour Texture and Frame Curves

Figure 4.1: Which of these leaves are oak leaves? Some objects are de�ned by the
contour texture of their boundaries. Can you locate the oak leave at the bottom
among the other leaves? It is much easier to classify oak leaves from non-oak
leaves than to locate individual oak leaves.

texture which serves to illustrate how contour texture may be used for learning.

4.3 Contour Texture and Frame Curves

2D texture has received considerable attention, both in the computational and psy-

chological literature. However, there is no unique de�nition for it. Roughly speaking,

2D texture is a statistical measure of a two-dimensional region based on local prop-

erties. Such properties typically include orientation and number of terminations of

the constituent elements (a.k.a. textons).

In this Chapter we argue that contour texture, a related but di�erent concept, is

a relevant non-rigid transformation and plays an important role in human visual per-

ception; contour texture can be de�ned as a statistical measure of a curve based on

local properties (See Figure 4.5). We call such a curve the \frame curve". Figure 4.3

shows some contours with di�erent contour textures, all of which have \invisible"
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Figure 4.2: Left: Cartoon with contour texture. Right: Another version of the
same cartoon with frame curves; i.e. these two images are identical with the
exception that one of them has been drawn by removing the contour texture
of its curves. The image without contour texture appears less vivid and has
ambiguity. In other words, signi�cant information is lost when the contour texture
of a contour is replaced by its frame curve.

Figure 4.3: Left: Di�erent curves with similar contour texture. The frame curve
in all these cases is a horizontal line. Right: Some curves with di�erent contour
textures.
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Figure 4.4: Left: A curved frame curve. Right: The same frame curve with a
contour texture (drawn by our implemented contour texture generator).

Figure 4.5: Left: An image with a vertical two-dimensional texture discontinuity.
The discontinuity is de�ned by the average orientation of the segments near a point
in the image. Such orientation is di�erent for the two regions surrounding the
central vertical line. Right: The tilted segments in this image de�ne a horizontal
line. A contour texture discontinuity in such a line is perceived in the middle of
it. The discontinuity is de�ned also by the average orientation of the segments
surrounding a point. One of the di�erences between contour texture and two-
dimensional texture is that the statistics are computed over a curve in one case
and on a two-dimensional region on the other. Other di�erences and similarities
are discussed in the text.
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horizontal lines as frame curves. The contours were drawn by an implemented con-

tour texture generator which takes as input a sample drawing of a COntour TExture

ELement or \Cotel" (akin to texton and protrusion2) and produces as output a con-

catenation of one or more of these cotels subject to certain random transformations.

The program draws the cotels using as a base a frame curve drawn by the user.

The notion of a frame curve as presented here is closely related to the one pre-

sented in [Subirana-Vilanova and Richards 1991] (see also Appendix B). A frame

curve is de�ned there as a virtual curve in the image which lies in \the center" of

the �gure's boundary. In the context of this Chapter, the whole contour texture is

the �gure. Note that the �gure is de�ned there as the collection of image structures

supporting visual analysis of a scene.3

A frame curve can also be used for other applications. For example, a frame

curve can be used as a topological obstruction to extend size functions [Uras and

Verri 1992] to non-circular shapes. As another example, frame curves can be used

to compute a part-description of a shape as shown in Appendix B.

4.4 Inside/Outside and Convexity

There are several factors that determine contour texture. In this Section we

argue that the side of the contour perceived as inside in
uences contour texture

perception. Consider the examples in Figure 4.8. The left and right stars in the

third row have similar outlines since one is a reversed4 version of the other. They are

partially smoothed versions of the center star but each of them looks di�erent from

the others; in fact, the left one is more similar to the center star (N > 20) despite

the fact that both have the same number of smoothed corners. We �rst made this

2This does not mean that we support the texton model of 2D texture perception. We include it

as a way to clarify the similarities between contour texture and 2D texture.
3This de�nition is in direct con
ict with the classical de�nition of �gure-ground since it is based

on attention as oppose to depth. It is for this reason that the Appendix, an updated version of

[Subirana-Vilanova and Richards 1991], renames \�gure" the attentional frame (to avoid confusions

with the classical de�nition of �gure).
4By \reversed" we mean that a mirror image of one of the two contours around the frame curve

yields the other.
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Figure 4.6: Top: contour. Second row: Normalized output of the selected �lter.
Third row: Cross section of the �lter output along the frame curve, horizontal in
this image, before post-processing. The post-processing removes the peaks by
spreading the maxima of the �lter output. This contour is interesting because
one side is a reversed version of the other yet a clear boundary may be perceived
(as if one was \pointy" and the other \smooth"). See text for details.
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observation in [Subirana-Vilanova and Richards 1991] and proposed that it is due to

a bias which makes the outside of the shapes more \salient"5.

In the context of contour texture, the �ndings of [Subirana-Vilanova and Richards

1991] imply that the contour texture of a shape depends on which side is perceived

as inside6. Their �ndings suggest that inside/outside relations are computed before

contour texture descriptions can be established, and agree with a model which starts

by computing an attentional reference frame. Such a frame includes the frame curve

and an inside/outside assignment. The model that we present in Section 4.6 conforms

to these suggestions.

The inside and outside of a contour are not always easy to de�ne. What is the

outside of a tree? Is the space between its leaves inside or outside it? In fact,

inside/outside and contour texture are closely related to non-rigid boundaries. In

Appendix B we look at this connection more in detail from the point of view of

human perception.

4.5 The Role of Scale and Complexity in Shape

and Contour Texture

As mentioned in Section 4.1, the notion of contour texture is meant to be used in

the di�erentiation of shapes belonging to di�erent perceptual categories (e.g. an

oak vs. an elm leaf) and not to distinguish shapes belonging to similar perceptual

categories (e.g. two oak leaves). This raises the following questions: Are two types

of representations (shape and contour texture) necessary? When are two objects

in the same category? When is a contour texture description appropriate? We

address these questions later in the Chapter by presenting an implemented contour

texture scheme designed to determine contour similarity based on contour texture

descriptors.

5This bias can be reversed depending on the task, see [Subirana-Vilanova and Richards 1991].
6See [Subirana-Vilanova and Richards 1991] or Appendix B for a more detailed discussion on

the de�nition of inside/outside relations, and on the in
uence of convexity.
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In this Section we argue that the di�erence between shape and contour texture is

relevant to computer vision (regardless of implementation details) and, in particular,

that it is important to �nd schemes which automatically determine whether a shape

\is" a contour texture or not. For contour textures, it is also important to embody

both representations (shape and contour texture) for every image contour. At the

beginning of this Chapter, we have already presented one of our strongest arguments:

Some shapes can not be distinguished by exact shape properties (while others can).

We will now present three other psychological observations that support this dif-

ference. First, studies with pigeons have shown that they can discriminate elements

with di�erent contour textures but have problems when the objects have similar

contour textures [Herrnstein and Loveland 1964], [Cerella 1982]. This suggests that

di�erent schemes may be needed for the recognition of shape and contour texture.

Second, consider the object in the top of Figure 4.7. Below the object, there are

two transformations of it: the left one is a pictorial enlargement, and the right one

is an enlargement in which the protrusions have been replaced by a repetition of the

contour (preserving the contour texture). The shape on the left appears more similar

to the one on the right7. We contend that this is true in general if the shapes have a

small number of protrusions (i.e. their \complexity" is low). In these cases, contour

texture does not seem to have an important role in their recognition8. However,

when the shapes are more complex (see bottom-most three shapes in Figure 4.7),

the similarity is not based on an exact pictorial matching. Instead, the enlarged

shape with the same contour texture is seen as more similar. For \complex" shapes,

the visual system tends to abstract the contour texture from the shape and the \en-

largement" of such a property is done at a symbolic level. In addition to supporting

the distinction between contour texture and shape (�rst question above), this obser-

vation suggests that complexity and scale play a role in determining what type of

description (shape or contour texture) should be used in each case: simple shapes

are fully represented;9 and complex shapes are represented with abstract contour

texture descriptors. [Goldmeier 1972], [Kertesz 1981], [Hamerly and Springer 1981],

7No detailed experiment was performed and the intuitions of the reader will be relied upon.
8The contour texture may play an intermediate role in the recognition of the shape by helping

indexing.
9In the sense that the location of all boundary points are memorized
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[Palmer 1982] and [Kimchi and Palmer 1982] each performed similar experiments on

a two-dimensional texture version of the problem. [Goldmeier 1972] also presents

some one-dimensional contour-texture-like examples (using the notions presented

here) which support the role of complexity described here.

The third study which agrees with our distinction between contour texture and

shape is that of [Rock, Halper, and Clyton 1972]. They showed subjects a complex

�gure and later showed them two �gures which had the same overall shape and

contour texture (using our terms), but only one of which was exactly the same. The

subjects were to �nd which was the previously seen shape. They found that subjects

performed only a slightly better than random. This suggests, again, that they were

just remembering the overall shape and an abstract description of the contour texture

of the boundary's shape. When subjects were presented with non-complex versions

of the same shapes the distinctions were based on the exact shapes themselves, which

agrees with the model given here.

4.6 A Filter-Based Scheme

The de�nitions of contour texture and two-dimensional texture, given in Section 4.3,

point out some of the relationships between them: both notions are based on statistics

of local properties. However, they di�er in the extent of such statistics - a curve for

contour texture and a surface for two-dimensional texture. In fact, most existing

schemes for two-dimensional textures can be applied, after some modi�cations, to

contour texture. Some of the problems that have to be solved in doing so are the

computation of frame curves and inside/outside relations.

Thus, it is worthwhile to review work on 2D texture. Theories of two-dimensional

texture are abundant, but we will mention just a few. Preattentive texture discrim-

ination has been attributed to di�erences in nth-order statistics of stimulus features

such as orientation, size, and brightness [Julesz and Bergen 1983], [Julesz 1986],

[Beck 1982], and [Voorhees and Poggio 1988]. Other theories have been proposed,

especially ones that deal with repetitive textures (textures in which textons are simi-

lar and on a regular pattern [Hamey 1988]), such as Fourier Transform based models
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Figure 4.7: This Figure provides evidence that for simple objects like the top one
the matching across scales is done pictorially (see second row). For more complex
shapes, on the other hand, such as the one on the third and fourth rows, the
matching is performed by maintaining the contour texture description. See text
for details.
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Figure 4.8: Top row: Use the middle pattern as reference. Most see the left
pattern as more similar to the reference. This could be because it has a smaller
number of modi�ed corners (with respect to the center) than the right one, and
therefore, a pictorial match is better. Second row: In this case, the left and right
stars look equally similar to the center one. This seems natural if we consider that
both have a similar number of corners smoothed. Third row: Most see the left
pattern as more similar despite the fact that both, left and right, have the same
number of smoothed corners with respect to the center star. Therefore, in order
to explain these observations, one can not base an argument on just the number
of smoothed corners. The positions of the smoothed corners need be taken into
account, i.e. preferences are not based on just pictorial matches. Rather, here the
convexities on the outside of the patterns seem to drive our similarity judgement.
(These Figures were taken from [Subirana-Vilanova and Richards 1991].)
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[Bajcsy 1973] and histogramming of displacement vectors [Tomita, Shirai, and Tsuji

1982]. All of these theories tend to work well on a restricted set of textures but have

been proved unable to predict human texture perception with su�cient accuracy in

all of its spectrum. In addition, it is unclear how these schemes could compute frame

curves or inside/outside relations, specially in the presence of fragmented and noisy

contours.

Another popular approach has been to base texture discrimination on the outputs

of a set of linear �lters applied to the image (see [Turner 1986], [Montes, Crist�obal,

and Besc�os 1988], [Fogel and Sagi 1989], [Malik and Perona 1989], and [Bovik, Clark,

and Geisler 1990]). These approaches di�er among themselves on the set of selected

�lters and/or on the required post-processing operations. A purely linear scheme

can not be used (see for example [Malik and Perona 1989]), justifying the need

for non-linear post-processing operations. [Malik and Perona 1989] compare the

discriminability in humans to the maximum gradient of the post-processed output

of the �lters they use, and �nd a remarkable match among them. The approach

is appealing also because of its simplicity and scope, and because it is conceivable

that it may be implemented by cortical cells. In addition, there exists a lot of work

on �lter based representations for vision [Simoncelli and Adelson 1989], [Simoncelli,

Freeman, Adelson, and Heeger 1991].

Some work exists on curve discrimination which could be applied to contour

texture discrimination. However, previous approaches are designed to process fully

connected curves [Granlund 1972], [Zahn and Roskies 1972], [Nahin 1974], [Richard

and Hemami 1974], [Eccles and Mc Queen and Rosen 1977], [Giardina and Kuhl

1977], [Person and Foo 1977], [Wallace and Wintz 1980], [Crimmins 1982], [Kuhl

and Giardina 1982], [Etesami and Uicker 1985], [Persoon and Fu 1986], [Strat 1990],

[Van Otterloo 1991], [Dudek 1992], [Maeder 1992], [Uras and Verry 1992]. Our

model, instead, works directly on images and does not require that the contour be

fully connected. The ability to process the contour directly on the image enables

the scheme to extend naturally to fragmented curves and to curves without a single

boundary (e.g. a contour composed of two adjacent curves).

Our scheme segments and recognizes the curves based on their contour texture

and consists of the following steps:
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1. Find the frame curves of the contour to be processed.

2. Decide which is the inner side of the contour and color (label) it.

3. Filter the image I with a set of oriented and unoriented �lters Fi at di�erent

scales, which yields I � F+
i and I � F�i , the negative and positive responses to

the �lters10. We have used the same �lters used by [Malik and Perona 1989].

4. Perform nonlinear operations on the outputs obtained, such as spreading the

maxima and performing lateral inhibition (in the current implementation).

5. Normalize the orientation of the directional �lters to the orientation of the

frame curve's tangent.

Figure 4.9: Top: Colored contour. Second row: Normalized output of one �lter
(horizontal odd-symmetric). Third row: Cross section of the processed �lter out-
put along the frame curve, horizontal in this image. We have chosen to display a
�lter which does not yield a discontinuity if we spread the maxima. However, if
we spread the number of maxima, a discontinuity appears. The discontinuity in
this case can also be found by spreading the maxima of another �lter.

Contour texture discontinuities can be de�ned as places of maximum gradient

(along the direction of the frame curve) in the obtained responses, and recognition

can be done by matching such responses. Steps 3, 4, and 5 have been implemented on

the Connection Machine and tried successfully on a variety of segmentation examples

(see Figures 4.9, 4.10, and 4.6).

10We used �lters similar to those used in [Malik and Perona 1989] in the context of 2D texture.

All the examples shown here where run at 4 x 1.5 deg. Note that it is unclear though if only even

symmetric �lters are needed for Contour Texture as proposed there for 2D texture.
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4.6.1 Computing Frame Curves

Finding the frame curve is not straight forward. The natural solution involves

smoothing [Subirana-Vilanova 1991] but has problems with the often-occurring com-

plex or not fully connected curves.

However, frame curves tend to lie on the ridges of one of the �lter's response.

This suggests that frame curves can be computed by a ridge detector that can locate

long, noisy, and smooth ridges of variable width in the �lter's output. One such

approach, Curved Inertia Frames, was presented in Chapter 3. Note that computing

ridges is di�erent from �nding discontinuities in the �lter's response, which is what

would be used to compute two-dimensional texture discontinuities in the schemes

mentioned above.

Therefore, our model uses the �lters of step 3 twice, once before step 1, where

we compute the frame curve, and once after step 2, to compute contour texture

descriptors.

4.6.2 Coloring

Step 2, coloring, is needed to account for the dependence of contour texture on the

side perceived as inside, as discussed above (see Figure 4.6). Coloring may also be

useful in increasing the response of the �lters when the contrast is low. However,

coloring runs into problems if the contour is not fully connected or if the inner side of

the contour is hard to determine. Possible alternatives include using the frame curve

as a basis to spread and stop the coloring, and enlarging the size of the contours to

increase the response of the �lters used in the third step.

4.7 Discussion

In this Chapter, we have proposed an image descriptor, contour texture, that can

be used for real-time contour classi�cation in several applications such as long-range
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tracking, segmentation, and recognition of some non-rigid objects. Contour textures

can not distinguish any pair of objects but require almost no computation time and

are necessary to distinguish some non-rigid transformations. In Chapter 5 we suggest

several applications of contour texture, among them its use as a learnable feature for

robot navigation, indexing, and recognition.
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Figure 4.10: Stages of �lter-scheme proposed. See text for details.
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Chapter 5

5.1 Discussion

The starting point of this research was that visual object recognition research to

date has focused on rigid objects. The study of the recognition of rigid objects

leaves open issues related to the recognition of non-rigid objects. We have presented

di�erent types of non-rigid objects, mid-level computations that work in the presence

of non-rigid objects, and clari�ed the role of non-rigid boundaries.

In this thesis we have introduced frame alignment, a computational approach to

recognition applicable to both rigid and non-rigid objects. The scheme has been

illustrated on two types of non-rigid objects, elongated 
exible objects and contour

textures, and has three stages. In the �rst stage, the framing stage, an anchor

curve is computed. We have given two di�erent names to such a curve: \frame

curve" in contour texture, and \skeleton" in elongated 
exible objects. The framing

stage works bottom-up, directly on the image, and performs perceptual organization

by selecting candidate frame curves for further processing. In the second stage,

the unbending stage, such a curve is used to \unbend" the shape. This stage is

not necessary in rigid objects. In the third stage, the matching stage, the unbent

description is used for matching. In this thesis we have concentrated on Curved

Inertia Frames which can be used in the framing stage. In particular, we have

illustrated how C.I.F. can �nd skeletons for elongated objects.

149



150 Chapter 5: Conclusion and Future Research

Frame alignment leads to a shape representation with two-levels: a part de-

scription capturing the large scale of the shape, and a complementary boundary

description capturing the small scale (see Chapter 4 and Section 4.5). The former is

computed directly by C.I.F. and the latter by contour texture �lters. Such a descrip-

tion makes explicit the di�erence between contour texture and shape and may be

used to simultaneously support several non-rigid transformations of the same object.

The methodology used in this thesis is summarized in Figure 5.1. The methodol-

ogy is based on studying non-rigid objects by working on four aspects. First, identify

a useful application in which to test work on a non-rigid transformation. Second,

search for physical models re
ecting the underling nature of the objects in consid-

eration. Third, research mid-level computations that can recover global structures

useful in the recognition of the objects. Fourth, incorporate signal processing tech-

niques into the mid-level computations (rather than working on the output of early

vision mechanisms).

In the rest of this Chapter we review more in detail the the novel �ndings of this

dissertation (Section 5.2) and give suggestions for future research (Section 5.3).

5.2 What's New

In this Section we will review the two areas addressed in this thesis: Non-rigid object

recognition (Section 5.2.1) and mid-level vision (Section 5.2.2).

5.2.1 Recognition of non-rigid objects and frame alignment

Elongated and Flexible Objects

We have suggested that frame alignment be used to recognize elongated 
exible

objects by \unbending" them using C.I.F.. We have demonstrated the \unbending"

transformation on the simple shapes shown in Figure 2.4. This is useful because


exible objects can be matched as if they where rigid once they have been transformed
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to a canonical frame position. The canonical orientation needs not be straight. If

the objects generally deviate from a circular arc then the canonical representation

could store the object with a circular principal axis.

In Appendix B we present evidence against the use of the unbending stage in

human perception. The evidence is based on an example in which a bending trans-

formation changes the similarity preferences in a set of three objects. It is important

to note that this evidence does not imply that frame curves are not used by human

perception. It simply suggests that, in human perception, their role may not be that

of frame structures for unbending.

Contour Texture Recognition

Contour texture had received almost no attention in the past, yet we suggest that it

plays an important role in visual perception, and in particular, in the shape recog-

nition of some non-rigid or complex objects and possibly in grouping, attention,

indexing, and shape-from-contour. We also propose that complex contours, (i.e.

non-smooth or disconnected) be represented by abstract contour texture descriptors

while simple ones be represented by the detailed location of the contour's points.

A �lter-based approach to contour texture is simple and yields useful results in

a large number of cases. In addition, we have shown that scale and inside/outside

relations play an important role in the perception of contour texture by humans.

5.2.2 Mid-level vision

C.I.F.

Curve Inertia Frames is the �rst computation that recovers candidate discrete curves

which are truly global. By global we mean that it provides two warrants: �rst, there

is a mechanism to de�ne a function that associates a given value to any curve in

a discrete space; second, there is an algorithm that is guaranteed to �nd the curve

with the highest possible value in such discrete space. Previous approaches provide
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theoretical justi�cation in the continuous but can only approximate it in the discrete.

In contrast, Curved Inertia Frames can be shown to be global in the parallel network

where it is implemented. The proof is similar in 
avor to well-known proofs in theory

of algorithms.

C.I.F. (Curved Inertia Frames) was presented in Chapter 2 and is a novel scheme

to compute curved symmetry axes. Previous schemes either use global information,

but compute only straight axes, or compute curved axes and use only local infor-

mation. C.I.F. can extract curved symmetry axes and use global information. This

gives the scheme some clear advantages over previous schemes: 1) It can be applied

directly in the image, 2) it automatically selects the scale of the object at each image

location, 3) it can compute curved axes, 4) it provides connected axes, 5) it is re-

markably stable to changes in the shape, 6) it provides a measure associated with the

relevance of the axes inside the shape, which can be used for shape description and

for grouping based on symmetry and convexity, 7) it can tolerate noisy and spurious

data, 8) it provides central points of the shape, 9 it is truly global!.

Curved Inertia Frames is based on two novel measures: the inertia surfaces and

the tolerated length. Similar measures may be incorporated in other algorithms such

as snakes [Kass, Witkin, and Terzopoulos 88], [Leymarie 1990], extremal regions

[Koenderink and van Doorn 1981], [Koenderink 1984], [Pizer, Koenderink, Lifshits,

Helmink and Kaasjager 1986], [Pizer 1988], [Gauch 1989], [Gauch and Pizer 1993],

dynamic coverings [Zucker, Dobbins, and Iverson 1989], deformable templates [Lip-

son, Yuille, O'Keefe, Cavanaugh, Taa�e and Rosenthal 1989], [Yuille, Cohen and

Hallinan 1989] and physical models [Metaxas 1992] to compute skeletons.

Ridge Detection

In Chapter 3, we have argued that early visual processing should seek representations

that make regions explicit, not just edges; furthermore, we have argued that region

representations should be computed directly on the image (i.e. not directly from

discontinuities). These suggestions can be taken further to imply that an attentional

\coordinate" frame (which corresponds to one of the perceptual groups obtained)

is imposed in the image prior to constructing a description for recognition (see also
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Appendix B).

According to this model, visual processing starts by computing a set of features

that enable the computation of a frame of reference. C.I.F. also starts by computing

a set of features all over the image (corresponding to the inertia values and the

tolerated length). This can be thought of as \smart" convolutions of the image with

suitable �lters plus some simple non-linear processing.

This has been the motivation for designing a new non-linear �lter for ridge-

detection. Our ridge detector has a number of advantages over previous ones: it

selects the appropriate scale at each point in the image, does not respond to edges,

can be used with brightness as well as color data, tolerates noise, and can �nd narrow

valleys and multiple ridges.

The resulting scheme can segment an image without making explicit use of dis-

continuities and is computationally e�cient on the Connection Machine (takes time

proportional to the size of the image). The performance of the scheme can in princi-

ple be attributed to a number of intervening factors; in any case, one of the critical

aspects of the scheme is the ridge-detector. Running the scheme on the edges or

using simple gabor �lters would not yield comparable results. The e�ective use of

color makes the scheme robust.

Human Perception

In Appendix B we provide evidence against frame alignment in human perception

by showing examples in which the recognition of elongated objects does not proceed

by unbending the shapes as suggested by our model.

In summary, the implication of the evidence presented in Appendix B, is that

frame curves in visual perception are set prior to constructing a description for

recognition, have a fuzzy boundary, their outside/top/near/incoming regions are

more salient (or not, depending on the task), and that visual processing proceeds by

the subsequent processing of convex structures (or holes).
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5.3 Future Research

In the following two subsections we will suggest future work related to recognition

of non-rigid objects and mid-level vision, respectively.

5.3.1 Non-rigid object recognition and frame alignment

Frame alignment can be applied to recognize rigid objects (see Figure 5.11), elongated


exible objects, and contour textures. However, there are other types of non-rigid

objects such as handwritten objects, warped objects, and symbolic objects for which

the notion of frame curve may not have much use Faces may require several frame

curves, rather than one, in order to perform alignment correctly. Figure 5.11 outlines

how frame alignment may be used to recognize script.

This thesis has used a mehtodology outlined in Figure 5.1. The Figure also

outlines how the methodology used in this thesis may be applied to crumpled objects.

We now present more detailed suggestions for elongated 
exible objects and con-

tour textures.

Elongated and Flexible Objects

We have presented evidence that elongated and 
exible objects are not recog-

nized in human perception using the unbending transformation. However, this does

not mean that frame curves are not used, nor that unbending is not used in a dif-

ferent way. For example, our �ndings are also consistent with a model in which

inside/outside assignments are performed prior to an unbending stage. More exper-

iments could be performed to clarify this issue further. Can we recognize common

rigid and elongated objects when they are bent? It is clear that this is possible as is

demonstrated by Figure 5.2. Does this recognition depend on the recognition of the

local rigid sub-parts of the bent plane? Or does it re
ect an unbending transforma-

tion?

The unbending stage could bene�t from recent progress in image warping using
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ning world loca-
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 Learning

 Frame curve
 Smoothing net-
work

 Non-linear filter
base
 Texture + early
level vision

 Contour texture

INTERDISCIPLINARY RESEARCH AGENDA BUILT AROUND
VISUAL RECOGNITION OF NON-RIGID OBJECTS AND MID-LEVEL VISION

 Curved axis
of inertia

Figure 5.1: This Figure illustrates the methodology used in this Thesis for inves-
tigating the recognition of non-rigid objects (see text for details). The �rst two
rows have already been discussed in previous Chapters. The last row presents a
suggestion for future work on crumpling transformations.

skeletons or other geometric transformations [Goldberg 1988].

Contour Texture

We have demonstrated the use of Contour Texture �lters in segmentation. Other

possible uses include:

� A robot looking at a scene receives over 50Mb of information every second.

However, robots often need a much smaller amount of information such as

\an object location" or \a direction in which to go". Perceptual schemes that

automatically provide this information have proved di�cult to construct and

most existing approaches do not run on real-time.

Several real-time systems exist but these are mostly in the area of tracking. In
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Figure 5.2: Do we recognize this plane by unbending it?

addition, the use of recognition abilities by robots has been generally restricted

to rigid objects, small libraries, or o�-line applications.

� Contour texture may also be used as an indexing cue in tasks such as face

recognition (see Figures 5.4 and 5.3).

� Use contour texture �lters to estimate 3D pose1 (see Figure 5.5). The use of

sterable �lters may help in estimating a pose and depth using a combination

of views.

� Use contour texture as a cue to perceptual organization and attention in com-

bination with other cues such as symmetry and convexity (see Figures 5.8

and 5.7)

5.3.2 C.I.F. and mid-level vision

C.I.F. can support many mid-level computations. Its success can be attributed to

the fact that it can compute probably global curves directly in the image. Provably

global schemes that could recover more complex structures, such as regions or sets

of curves, directly in the image would undoubtly surpass the performance of C.I.F..

1Note that a lot of work on recovering depth from texture exists [Stevens 1980], [Witkin 1980].
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Figure 5.3: Top: input images. Bottom two rows: frame curves computed with
Canny edge detector (left) and frame curves overlaid on input image (right).
Face indexing can be done by looking at contour texture descriptors along the
frame curves.
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Frame curves

It is still unclear to what extent Curved Inertia Frames can be used to recover the

frame curve of a contour texture. However, a ridge detector such as the one presented

in Chapter 3 may be useful in �nding frame curves in the output of contour texture

�lters.

As we have suggested in Chapter 4, frame curves can be computed on the output

of an edge detector by smoothing the contour. Another possibility may be to use

Curved Inertia Frames to \smooth" the curve. This may be done by using a non-

cartesian network with processors allocated around the original contour.

3D Skeletons

Curved Inertia Frames as presented here computes skeletons in 2 dimensional

images. The network can be extended to �nding 3 dimensional skeletons [Brady

1983], [Nackman and Pizer 1985] from 3 dimensional data since the local estimates

for orientation and curvature can be found in a similar way and the network extends

to 3 dimensions - this, of course, at the cost of increasing the number of processors.

The problem of �nding 3D skeletons from 2D images is more complex; however,

in most cases the projection of the 3D skeleton can be found by working on the

2D projection of the shape, especially for elongated objects (at least for the shapes

shown in [Snodgrass and Vanderwart 1980]).

Edge detection and early vision

Recently, �lter-based approaches to early vision have been presented. These in-

clude texture [Knuttson and Granlund 1983], [Turner 1986], [Fogel and Sagi 1989],

[Malik and Perona 1989], [Bovik, Clark and Geisler 1990], stereo [Kass 1983], [Jones

and Malik 1990], brightness edge detection [Canny 1986], [Morrone, Owens and Burr

1987, 1990], [Freeman and Adelson 1990], and motion [Heeger 1988]. (See also [Abra-

matic and Faugeras 1982], [Marrone and Owens 1987]). In most of these schemes,

discontinuities are de�ned as maxima on the �lter output. Such maxima can be seen

as ridges on the �lter output.

Thus, Curved Inertia Frames may be used to compute discontinuities in di�erent
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early vision modules such as edge detection, stereo, motion, and texture using suit-

able �lters to estimate inertia values and tolerated length. Curved Inertia Frames

could also be used to look for regions, not discontinuities, by extending the vector

color ridge-detector to work on other types of early vision information.

Other Applications Of Reference Frames: Attention, Feature and Corner Detection,

Part Segmentation, Spatial Reasoning, and Shape Description

The use of reference frames, and therefore that of Curved Inertia Frames, need

not be restricted to recognition nor to the speci�c types of objects covered here. Fig-

ure 5.11 illustrates how frame curves may be applied to rigid objects and handwritten

character recognition (see [Edelman 1988] for an example of how alignment may be

used in OCR). Skeletons may be used in several of the approaches developped for

rigid objects [Ullman 1986], [Grimson and Lozano-P�erez 1988], [Huttenlocher 1988],

[Cass 1992], [Breuel 1992], [Wells 1993]. Non-recognition examples where C.I.F. may

be useful include: �nding an exit path in the maze of Figure 5.9, �nding the corner

in Figure 5.10, �nding features for handwritten recognition in Figure 5.12, �nding

skewed symmetries [Friedberg 1986], �nding the blob in Figure 5.13, determining

�gure-ground relations in Figure 2.10 and �nding the most interesting object in Fig-

ure 2.20. In these applications, the main advantage of our scheme over previously

presented grouping schemes [Marroquin 1976], [Witkin and Tenenbaum 1983], [Ma-

honey 1985], [Haralick and Shapiro 1985], [Lowe 1984, 1987], [Sha'ashua and Ullman

1988], [Jacobs 1989], [Grimson 1990], [Subirana-Vilanova 1990], [Clemens 1991] is

that it can �nd complete global, curved, symmetric, and large structures directly on

the image without requiring features like straight segments or corners. In this con-

text, perceptual organization is related to part segmentation [Hollerbach 1975], [Marr

1977], [Duda and Hart 1973], [Binford 1981], [Ho�man and Richards 1984], [Vaina

and Zlateva 1990], [Badler and Bajcsy 1978], [Binford 1971], [Brooks, Russel, and

Binford 1979], [Brooks 1981], [Biederman 1985], [Marr and Nishihara 1978], [Marr

1982], [Guzman 1969], [Pentland 1988] and [Waltz 1975]. In part segmentation one

is interested in �nding an arrangement of structures in the image, not just on �nding

them. This complicates the problem because one skeleton alone is not su�cient (See

section 2.8.3).

Parameter estimation and shape description
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Curved Inertia Frames has several parameters to tinker with. Most notably the

penetration constant (controlling the curvature) and the symmetry constant (con-

trolling the deviation from symmetry that is allowed). These parameters are not

hard to set when looking for a long and elongated axis. However, there are some

instances in which di�erent parameters may be needed, as illustrated in Figure 5.14.

The role of context in shape description and perceptual organization deserves more

work.

The Skeleton Sketch

The Skeleton Sketch suggests a way in which interest points can be computed

bottom-up. These points may be useful as anchor structures for aligning model to

object. The Skeleton Sketch also provides a continuous measure useful in determining

the distance from the center of the object, suggesting a number of experiments. For

example, one could test whether the time to learn/recognize an object depends on

the �xation point. The relation may be similar to the way in which a dependence

has been found in human perception between object orientation and recognition

time/accuracy (see references in the Appendices). This could be done on a set of

similar objects of the type shown in Figure A.3.

Random networks

More work is necessary to clarify the type of non-cartesian network that is best

suited to Curved Inertia Frames. This requires more theoretical progress, borrow-

ing from the �elds of random algorithms [Rahavan 1990] and geometric probability

[Solomon 1978]. Random networks could �nd use in other existing algorithms such

as the dynamic programming aproach to shape from shading presented in [Langer

and Zucker 1992].

Other mid-level vision tasks

In this thesis we have concentrated our e�orts into networks that perform percep-

tual organization by computing frames that go through high, long, symmetric, and

smooth regions of the shape. Other mid-level tasks may be performed with similar

computations. For example, that of �nding a description around a focus point or that

of computing transparent surfaces. These networks may complement Curved Inertia
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Frames, for example by incorporating the notion of small structures as described

next.

Small structures

The scheme presented in this thesis has a bias for large structures. This is gen-

erally a good rule, except in some cases, see Figures A.2, A.1 and A.4. The example

of Figure A.1 provides evidence that the preference for small objects can not be due

only to pop-out e�ects. This distinction had not been made before and deserves

further treatment.
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Figure 5.4: Contour texture could be used as a learnable feature for for recognition.
The outputs of the �lters in the frame curve could be learned using a connectionist
approach. This could be used to index into a face database.
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Figure 5.5: Contour texture can provide three-dimensional information [Stevens
1980]. This could be recovered by �nding the �lter outputs that respond to a
given contour.
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Figure 5.6: Evidence that contour texture is used when completing occluded con-
tours.

Figure 5.7: Evidence that discontinuities in contour texture are easy to detect.
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Figure 5.8: This Figure illustrates some of the applications of contour texture.
Left: Contours can be grouped based on their contour texture. Right: The contour
texture can be used as a powerful indexing measure into large databases of objects.

Figure 5.9: Left: Maze. Center: A portion of the maze is highlighted with a
discontinuous line. Right: A candidate description of the highlighted region that
may be useful to �nd an exit from the maze. In this Chapter, we are interested
in �nding frames or skeletons that can yield high-level descriptors like the one
shown.

Figure 5.10: Finding corners is hard because they depend on scale. Here we
present compelling evidence adapted from [Lowe 1988]. A suggestion of this thisis
is that the scheme presented in this Chapter can locate corners of this type,
independently of scale, because it looks for the largest possible scale. The scheme
would look for position along the contour where there are local maximum in the
skeleton sketch.
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Skeleton

Warp-pair

Frame curve

Matching

Image

Rigid objs. Handwritten objs.

"Unbending"

FRAME ALIGNMENT

Rotated object Warped text

Framing: Curved Inertia Frames

Figure 5.11: Left: Frame alignment applied to rigid objects. The \bending" stage
is reduced to a rotation. Right: Frame alignment applied to handwritten objects.
One frame is not su�cient to \unbend" the whole object. Separate curves for
each letter need to be computed.



5.3: Future Research 167

Figure 5.12: Top left: Handritten word. Top right: Highest inertia skeleton.
Bottom left: Set of Curved Inertia Frames found by random network. The arrow
indicates the \end" point of the skeleton. Bottom right: Features along the contour
have been found by locating local maxima in the Skeleton Sketch.
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Figure 5.13: Finding the bent blob in the left image would be easy if we had
the bent frame shown in the center. Right: Another blob de�ned by orientation
elements of a single orientation. The scheme presented in this thesis needs some
modi�cations before it can attempt to segment the blob on the right (see text).



5.3: Future Research 169

Figure 5.14: This �gure reinforces the notion that small changes may result in
remarkably di�erent perceptions. Top row: One un�nished shape and two ways of
completing the shape. Second row: the two completed shapes are almost identical
as it is shown by overimposing the two shapes. Third and fourth rows: Two
possible descriptions for the two shapes. This �gure provides evidence that local
cues such as curvature are important to determinewhat is the appropriate skeleton
description for a shape. Curved Inertia Frames can be adapted to di�erent task
requirements by adjusting the penetration and symmetry constants. With the
parameters used in the experiments, the output would be that of the bent axis.
However, C.I.F. �nds a straight axis if the penetration constant is reduced to 0.2
(instead of 0.5). Example adapted from [Richards 1989].
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A.1 Introduction

For a given shape, the skeleton found by Curved Inertia Frames, as described in

Chapters 2 and 3, corresponds roughly to the central regions of the shape. In this

Appendix we show how C.I.F. can handle several peculiarities of human perception:

bias in frame of reference and occlusion (Sections A.2 and A.3), size perception

(Section A.4), perception of discontinuities (Section A.5), and frames of reference in

recognition (Section A.6). Our analysis will lead us to present several open problems

and new perceptual phenomena. Appendix B will present evidence in favor of the

use of frame curves in human perception.

A.2 Frames of Reference

Important frames of reference in the perception of shape and spatial relations by

humans include: that of the perceived object, that of the perceiver, and that of the

environment. So far in this thesis, we have concentrated on the �rst. A consid-

erable amount of e�ort has been devoted to study the e�ects of the orientation of

such a frame (relevant results include, to name but a few [Attneave 1967], [Shep-

ard and Metzler 1971], [Rock 1973], [Cooper 1976], [Wiser 1980, 1981], [Schwartz

1981], [Shepard and Cooper 1982], [Jolicoeur and Landau 1984], [Jolicoeur 1985],

[Palmer 1985], [Palmer and Hurwitz 1985], [Corballis and Cullen 1986], [Maki 1986],

[Jolicoeur, Snow and Murray 1987], [Parsons and Shimojo 1987], [Robertson, Palmer

and Gomez 1987], [Rock and DiVita 1987], [Bethel-Fox and Shepard 1988] [Shepard

and Metzler 1988], [Corballis 1988], [Palmer, Simone, and Kube 1988], [Georgopou-

los, Lurito, Petrides, Schwartz, and Massey 1989], [Tarr and Pinker 1989]). C.I.F.

suggests a computational model of how such an orientation may be computed, the

orientation is that of the most salient skeleton assuming it is restricted to be straight

(� and � close to 0).

The in
uence of the environment on the frame has been extensively studied, too

[Mach 1914], [Attneave 1968], [Palmer 1980], [Palmer and Bucher 1981], [Humphreys

1983], [Palmer 1989]. In some cases the perception of the shape can be biased by
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the frame of the environment. In particular, humans have a bias for the vertical

in shape description (see [Rock 1973]) so that some shapes are perceived di�erently

depending on the orientation at which they are viewed. For example, a rotated square

is perceived as a diamond (see Figure A.5). This bias can be taken into account in

C.I.F. by adding some constant value to the inertia surface that corresponds to the

vertical orientation so that vertical curves receive a higher inertia value. Adding the

bias towards the vertical is also useful because it can handle non-elongated objects

that are not symmetric, so that the preferred frame is a vertical axis going through

the center of the shape1.

In other cases, the preferred frame is de�ned by the combination of several oth-

erwise non salient frames. This is the case in Mach's demonstration, �rst described

by E. Mach at the beginning of this century (see Figure 2.18). C.I.F. incorporates

this behavior because the best curve can be allowed to extend beyond one object

increasing the inertia of one axis by the presence of objects nearby, especially when

the objects have high inertia aligned axes. This example also illustrates the tolerance

of the scheme to fragmented shapes.

The shape of the frame has received little attention. In Chapter 2, we proposed

that in frame alignment a curved frame might be useful (see also Figure 2.4 and

[Palmer 1989]). In particular, we have proposed to recognize elongated curved objects

by unbending them using their main curved axis as a frame to match the unbent

versions. In Appendix B it is shown that such a strategy is not always used in human

perception.)

In �gure-ground segregation, reference frame computation, and perceptual orga-

nization it is well known that humans prefer symmetric regions over those that are

not (see Figures 2.10, A.6, and the references above2). Symmetric regions can be

discerned in our scheme by looking for the points in the image with higher skeleton

inertia values. However, [Kanisza and Gerbino 1976] have shown that in some cases

convexity may override symmetry (see Figure 2.10).

1As discussed in section 2.5, another alternative is to de�ne a speci�c computation to handle

the portions of the shapes that are circular [Fleck 1986], [Brady and Scott 1988].
2The role of symmetry has been studied also for random dot displays [Barlow and Reeves 1979],

[Barlow 1982] and occlusion [Rock 1984].
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Convexity information can be introduced in the inertia surfaces by looking at

the distances to the shape, and at the convexity at these points. This information

can be used so that frames inside a convex region receive a higher inertia value.

Observe that the relevant scale of the convexity at each point can be determined by

the distances to the shape (R and r as de�ned in Chapter 2).

The location of the frame of reference [Richards and Kaufman 1969], [Kaufman

and Richards 1969], [Carpenter and Just 1978], [Cavanagh 1978, 1985], [Palmer 1983],

[Nazir and O'Reagan 1990] is related to attention and eye movements [Yarbus 1967],

and in
uences �gure-ground relations (e.g. Figure D9 in [Shepard 1990]).

We have shown how certain salient structures and individual points can be se-

lected in the image using the Skeleton Sketch; subsequent processing stages can be

applied selectively to the selected structures, endowing the system with a capacity

similar to the use of selective attention in human vision. The points provided by the

Skeleton Sketch are in locations central to some structures of the image and could

guide processing in a way similar to the direction of gaze in humans (e.g. [Yarbus

1967]).

[Palmer 1983] studied the in
uence of symmetry on �gural goodness. He com-

puted a \mean goodness rating" associated to each point inside a �gure. For a

square (see Figure 4 in [Palmer 1983]), he found a distribution similar to that of the

skeleton sketch shown in Figure 2.17. The role of this measure is unclear but our

scheme suggests that it can be computed bottom-up and hence play a role prior to

the recognition of the shape.

Perhaps this measure is involved in providing translation invariance so that ob-

jects are �rst transformed into a canonical position. This suggestion is similar to

others that attempt to explain rotation invariance (see references in Appendix B)

and it could be tested in a similar way. For example, one can compute the time

to learn/recognize an object (from a class sharing a similar property such as the

one shown in Figure A.3) in terms of a given displacement in �xation point3 (or

orientation in the references above).

3Note that most computational schemes di�ere from this model and assume that translation

invariance is confounded with recognition [Fukushima 1980], [LeCun, Boser, Benker, Henderson,

Howard, Hubbard and Jackel 1989], [F�oldi�ak 1991].
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Figure A.1: Top Center: Figure is often seen as shown on the right, (and ground
as on the left) due to vertical bias. Bottom Center: Preference for the vertical,
and preference for large objects is over-ridden here by the preference for small
structures (after [Rock 1985]). The network presented in this thesis would �nd
the left object as �gure due to its preference for large structures. Further research
is necessary to clarify when small structures are more salient.

A.3 What Occludes What?

C.I.F. solves the problem of �nding di�erent overlapping regions by looking at the

large structures one by one. In C.I.F., the larger structures are the �rst ones to be

recovered. This breaks small structures covered by larger structures into di�erent

parts. As a result, C.I.F. embodies the constraint that larger structures tend to be

perceived as occluding surfaces [Petter 1956]. (See also Figure A.7).

A blob that is salient in one image might not be so when other elements are

introduced. An example due to J. Lettvin that supports this claim is shown in

�gure A.4. We contend that, using our terms, the largest scale is automatically

selected by the human visual system. In other words, when there are \overlapping"

interpretations the human visual system picks \the largest".

A.4 Small Is Beautiful Too

As mentioned in Chapter 2, the emphasis of C.I.F. is towards �nding large structures.

In some cases, this may be misleading as evidenced by Figures A.2 and A.1. In these
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Figure A.2: Drawing from Mir�o. As in the previous Figure, small structures
de�ne the object depicted in this image. This image would confuse the network
presented in [Sha'ashua and Ullman 1988].

examples the interesting structure is not composed of individual elements that pop-

out in the background. Instead, what seems to capture our attention can be described

as \what is not large". That is, looking for the large structures and �nding what is left

would recover the interesting structure as if we where getting rid of the background.

It is unclear, though, if this observation would hold in general and further research

is necessary.

Figure A.3: Does the time to recognize/learn these objects depend on the �xation
point? (See text for details.)
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Figure A.4: This Figure provides evidence that a salient blob in one image might
not be so when other elements are introduced. By �xating at the X try to identify
the letter N in the left and in the right of the image. The one on the left is not
identi�able. We contend that this is due to the fact that the human visual system
selects the larger scale in the left case yielding an horizontal blob. This example
is due to J. Lettvin (reference taken from [Ullman 1984]).

A.5 Are Edges Necessary?

A central point in Chapter 3 is that the computation of discontinuities should not

precede perceptual organization. Further evidence for the importance of perceptual

organization is provided by an astonishing result obtained by [Cumming, Hurlbert,

Johnson, and Parker 1991]: when a textured cycle of a sine wave in depth (the upper

half convex, the lower half concave) is seen rotating, both halves may appear convex4,

despite the fact that this challenges rigidity5 (in fact, a narrow band between the

two ribbons is seen as moving non-rigidly!). This, at �rst, seems to violate the

rigidity assumption. However, these results provide evidence that before �nding

the structure from motion, the human visual system may segment the image into

4The surface can be described by the equation Z = sin(y) where Z is the depth from the �xation

plane. The rotation is along the Y -axis by +=� 10 degrees at 1 Hz.
5This observation is relevant because it supports the notion that perceptual organization is

computed in the image before structure from motion is recovered.
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Figure A.5: A square has four symmetry axes all of which could potentially be
used to describe it. Depending which one of them is chosen, this shape appears
as a square or as a diamond. This suggests that when there is ambiguity the
vertical can play an important role. The two trapezoids, on the right further
illustrate that even when a shape has several symmetry axis the vertical might
be preferred even if it does not correspond to a perfect symmetry axis. Observe
that the vertical might be overridden by an exterior frame which can be de�ned
by the combination of several otherwise not salient frames from di�erent shapes
such as Mach demonstration, see Figure 2.18.

di�erent components. Within each of these, rigidity can prevail.

Evidence against any form of grouping prior to stereo is provided by the fact

that we can understand random dot stereo diagrams (R.D.S.) even though there is

no evidence at all for perceptual groups in one single image. However, it is unclear

from current psychological data if these displays take longer time. If they do, one

possible explanation (which is consistent with our suggestions) may be that they

impair perceptual organization on the individual images and therefore on stereo

computations. We believe that the e�ect of such demonstrations has been to focus

the attention on stereo without grouping. But perhaps grouping is central to stereo

and R.D.S. are just an example of the stability of our stereo system (and its stereo

grouping component!).

A second central point of Chapter 3 is that edge detection may not precede

perceptual organization. However, there are a number of situations in which edges

are clearly necessary as when you have a line drawing image6 or for the Kanizsa

�gures. Nevertheless some sort of region processing must be involved since surfaces

are also perceived. We (like others) believe that region-based representations should

be sought even in this case. In fact, as we noted in section 2, line drawings are harder

6Although note that each line has 2 edges (not just one), generally it is assumed that when

we look at such drawings we ignore one of the edges. An alternative possibility is that our visual

system assembles a region-based description from the edges without merging them.
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to recognize (just like R.D.S. seem to be - but see [Biederman 1988]). The role of

discontinuities versus that of regions is still unclear.

A.6 Against Frame Alignment; Or Not?; OrWhat?

Elongated objects, like an I, when bent become like a C or an O developing a hole in

the process (see Figure 2.6). In other words, there is a transformation that relates

elongated objects to objects with a hole.

The notion that C's (elongated 
exible objects) and O's (holes) can both be seen

as bent I's suggests that there may be a similar algorithm to recognize both types of

objects which uses this fact. As suggested in Chapter 2, elongated 
exible objects

can be recognized in some cases using frame alignment by transforming the image

to a canonical version of itself, in which the object has been unbent (see Figure 2.4).

With this scheme, the skeleton of the shape is used as an anchor structure for the

alignment process. Can this scheme be extended to handle objects with holes? Does

human perception use such a scheme?

One property that distinguishes the two (I and O) is that the inside of a hole can

be perceived as a stable entity (present in di�erent instances of the shape) while in

the bent I the cavity is unstable due to changes depending on the degree of bending.

On the other hand, the hole of a bent I occurs at a predictable distance from the

outside of the shape while in more symbolic \hole-like" descriptions the location is

more unpredictable.

Notions of inside/outside are also key in part-like descriptions since we are bound

to determine what is the inside of a part before we can compute its extent. Note

that the de�nition of part given by [Ho�man and Richards 1984] depends on the

side perceived as inside. This brings us to the issue of non-rigid boundaries: How

is inside/outside determined? What extent does a boundary have? If holes are

independent, how does processing proceed? In Appendix B we present evidence in

favor of a scheme in which visual processing proceeds by the successive processing

of convex chunks (or \hole chunks"!). This lead us to analyze the process by which
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images are described. We will suggest that a part description can be computed using

the outside rule (de�ned in Section B.3) which de�nes them as outside chunks of

convex chunks. We will also describe the implications of our �ndings for existing

recognition models.
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Figure A.6: The patterns in this Figure have been made by superimposing an
image made of random dots with a transformation of itself. Transformations
shown include rotation (top left), expansion (top middle), translation (top right),
symmetry (bottom left). The two other images (bottom middle and right) are
a rotation of the bottom left image. Other random dot transformations include
stereo and motion. Surprisingly enough, we can detect most of these transforma-
tions. However, many studies suggest that our detection of symmetry in these
cases is limited - being restricted to the vertical and to low frequency information.
We contend that humans do not have symmetry detectors in the same way that it
has been proposed that we have orientation detectors. Instead, we propose that
symmetry is detected at a later stage and based in salient structures.

Figure A.7: Large shapes occlude small ones. From [Kanizsa 1979].
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Frame Curves and Non-Rigid

Boundaries

Appendix B

Does the human visual system compute frame curves or skeletons? If so, are they

computed prior to recognition? Does the human visual system use frame curves to

unbend objects before recognizing them? In this Appendix1 we will present some

suggestions that attempt to answer these issues. Since they are coupled to some

fundamental problems of visual perception such as perceptual organization, atten-

tion, reference frames, and recognition, it will be necessary to address these, too.

The suggestions presented in the Appendix are based on some simple observations.

The essence of them can be easily grasped by glancing at the accompanying �gures.

The text alternates the presentation of such observations with the discussion of the

suggested implications. We begin by challenging the notion that objects have well

de�ned boundaries.

B.1 Introduction

The natural world is usually conceived as being composed of di�erent objects such as

chairs, dogs, or trees. This conception carries with it a notion that objects occupy a

region of space, and have an \inside". By default, things outside this region of space

are considered \outside" the object. Thus, the lungs of a dog are inside the dog, but

the chair occupies a di�erent region and is outside the object dog. When an object

1This Appendix is adapted from [Subirana-Vilanova and Richards 1991].
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is projected into an image, these simple notions lead to what appears to be a clear

disjunction between what is considered �gure, and what is ground. Customarily, the

�gure is seen as the inside of the imaged shape as de�ned by its bounding contours

(i.e. its silhouette). The region outside this boundary is ground. This implies that

the points of an image are either �gure or ground. Such a view is reinforced by

reversible �gures, such as Rubin's vase-face or Escher's patterns of birds and �sh.

This view carries the notion that, at any instant, the attended region has a well

de�ned boundary.

Here, we show that such a simple disjunctive notion of attention and its reference

frame is incorrect, and in particular, we show that the assignment of an attentional

boundary to a region of an image is ill-posed. If the region of attention has an ill-

de�ned boundary, presumably there are some regions of the image that are receiving

\more attention" than others. We present observations that support this conclusions

and show that the result is due not only to processing constraints but also to some

computational needs of the perceiver. In particular, a fuzzy boundary leaves room to

address regions of the image that are of more immediate concern, such as the handle

of a mug (its outside) that we are trying to grasp, or the inside surface of a hole that

we are trying to penetrate.

The ambiguity in de�ning a precise region of the image as the subject of attention

arises in part because many objects in the world do not have clearly de�ned bound-

aries. Although objects occupy a region of space, the inside and outside regions of

this space are uncertain. For example, what is the inside of a �r tree? Does it include

the region between the branches where birds might nest, or the air space between the

needles? If we attempt to be quite literal, then perhaps only the solid parts de�ne

the tree's exterior. But clearly such a de�nition is not consistent with our conceptual

view of the �r tree which includes roughly everything within its convex hull. Just like

the simple donut, we really have at least two and perhaps more conceptualizations

of inside and outside. For the donut, the hole is inside it, in one sense, whereas the

dough is inside it in another. But the region occupied by the donut for the most

part includes both. Similarly for the �r tree, or for the air space of the mouth of a

dog when it barks. Which of these two quite distinct inclusions of inside should be

associated with the notion of object? Or, more properly, what is the shape of the

atentional region and its reference frame in this case?
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We begin, in the next Section, by presenting some demonstrations that clarify how

�gural assignments are given to image regions. Along the way, we use these demon-

strations to suggest an operational de�nition of the attentional reference frame. In

the following two sections we suggest that outside is more salient than inside; or

not; or what? In section B.5 we review the notion of \hole" and in Sections B.6

and B.7 that of attentional reference frame. In Sections B.8 and B.9 we discuss the

implications of our �ndings to visual perception. In Section B.11, we suggest that

typically \near is more salient than far" and point to other similar biases. We end

in Section B.12 with a summary of the new �ndings presented.

Figure B.1: Fir tree at several scales of resolution. What is inside the tree?

B.2 Fuzzy Boundaries

Typically, �gure-ground assignments are disjunctive, as in the Escher-drawings. How-

ever, when the image of a fractal-like object is considered, the exact boundary of the

image shape is unclear, and depends upon the scale used to analyze the image. For

the �nest scale, perhaps the �nest details are explicit, such as the needles of a spruce

or the small holes through which a visual ray can pass unobstructed. But at the

coarsest scale, most fractal objects including trees will appear as a smooth, solid

convex shape. Any de�nition of the region of attention and its frame must address

this scale issue. Consider then, the following de�nitions:

De�nition 1 (Region of Attention): The region of attention is that collection of

structures (not necessarily image-based) which currently are supporting the analysis

of a scene.
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De�nition 2 (Attentional Frame): The attentional frame, for a region of atten-

tion, is a coordinate frame within which the structures can be organized.

By these de�nitions, we mean to imply that the perceiver is trying to build or

recover the description of an object (or scene) in the world, and his information-

processing capability is focused on certain regions in the scene that are directly

relevant to this task.

The precise regions of the scene that are being analyzed, and their level of detail

will be set by the demands of the goal in mind. Such a de�nition implies that the

regions of the scene assigned as attentional frame may not have a well-de�ned, visible

contour. Indeed, by our de�nition these regions do not have to be spatially coherent!

It has long been known that humans concentrate the processing of images in

certain regions or structures of the visual array (e.g. [Voorhis and Hillyard 1977]).

Attention has several forms: one of them, perhaps the most obvious, is gaze. We can

not explore a stationary scene by swinging our eyes past it in continuous movements.

Instead, the eyes jump with a saccadic movement, come to rest momentarily and

then jump to a new locus of interest (see [Yarbus 1967]).

These observations suggest the following:

Claim 1 The region of the image currently under directed attention may not have a

well-de�ned boundary earmarked by a visible image contour.

Figure B.2: The notion of \what is the attentional frame" does not require that
the �gure be a region enclosed by a visible contour. In (a) the x is seen to lie
within the C, and is associated with the �gure, whereas in (b) the x lies outside
the �gure. In (c) the answer is unclear.

In support of this claim consider the C of Figure B.2. Although the image contour

by itself is well-de�ned, the region enclosed by the C is not. The region \enclosed" by
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the \C" is a legitimate processing chunk. For example, if one asks the question does

the \X" lie inside the C, our immediate answer is yes for case (a), and no for case

(b). To make this judgement, the visual system must evaluate the size of the interior

region of the C. Thus, by our de�nition, the concept \inside of C" must lead to an

assignment of certain pixels of the display as the region of attention. Without an

explicit contour in the image, however, where should one draw the boundary between

the region under attention? For example, should we choose to close the attentional

region with a straight line between the two endpoints? Another possibility would be

to �nd a spline that completes the curve in such a way that the tangent at the two

endpoints of the C is continuous for the complete �gure. These �ndings agree with

a model in which the boundary is something more closely approaching a \blurred"

version of the C, as if a large Gaussian mask were imposed on a colored closed C. We

contend that such \fuzzy" attentional boundaries occur not only within regions that

are incompletely speci�ed, such as that within the incomplete closing of the C, but

also within regions that appear more properly de�ned by explicit image contours.

To further clarify our de�nition of the attentional region and its frame, note that it

is not prescribed by the retinal image, but rather by the collection of image structures

in view. Any pixel-based de�nition tied exclusively to the retinal image is inadequate,

for it will not allow attentionnal (and processing) assertions to be made by a sequence

of �xations of the object. Rather, a structure-based de�nition of attentional frame

presumes that the observer is building a description of an object or event, perhaps by

recovering object properties. The support required to build these object properties

is what we de�ne as the attentional region. This support corresponds closely to

Ullman's incremental representations [Ullman 1984] upon which visual routines may

act, and consequently the operations involved in attentional assertions should include

such procedures as indexing the sub-regions, marking these regions, and the setting

of a coordinate frame. We continue with some simple observations that bear on these

problems.
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B.3 Outside is More Salient than Inside

When binary attentional assignments are made for an image shape with a well-

de�ned, simple, closed contour, such as an \O", the assignment is equivalent to

partitioning the image into two regions, one lying inside the contour, the other out-

side. For such a simple shape as the \O", the immediate intuition is that it is the

inside of the contour which is given the attentional assignment, and this does not

include any of the outside of the contour (see [Ho�man and Richards 1984] for ex-

ample, where shape descriptors depend on such a distinction). By our de�nition,

however, the attentional region might also include at the very least a small band or

ribbon outside the contour, simply because contour analysis demands such. As a step

toward testing this notion, namely that a ribbon along the outer boundary of the

shape should also be included when attentional assignments are made, we perturb

the contour to create simple textures such a those illustrated in Figure B.3 (bottom

row).

In this Figure, let the middle star-pattern be your reference. Given this reference

pattern, which of the two adjacent patterns is the most similar? We �nd that the

pattern on the left is the most similar2. Now look more closely at these two adjacent

patterns. In the left pattern, the intrusions have been smoothed, whereas in the

right pattern the protrusions are smooth. Clearly the similarity judgement is based

upon the similarity of the protrusions, which are viewed as sharp convex angles. The

inner discrepancy is almost neglected.

The same conclusion is reached even when the contour has a more part-based


avor [Ho�man and Richards 1984], rather than being a contour texture, as in Fig-

ure B.4. Here, a rectangle has been modi�ed to have only two protrusions 3. Again,

subjects will base their similarity judgments on the shape of the convex portion of

the protrusion, rather than the inner concavity.

This result is not surprising if shape recognition is to make any use of the fact that

2The results are virtually independent of the viewing conditions. However, if the stars sustain

an angle larger than 10 degrees, the preferences may reverse. A detailed experiment has not been

made and the observations of the reader will be relied upon to carry our arguments
3A collection of similar shapes could be used in a formal experiment.
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most objects in nature can be decomposed into parts. The use of such a property

should indeed place more emphasis upon the outer portions of the object silhouette,

because it is here that the character of a part is generally determined, not by the

nature of its attachment. Almost all attachments lead to concavities, such as when

a stick is thrust into a marshmallow. Trying to classify a three-dimensional object

by its attachments is usually misguided, not only because many di�erent parts can

have similar attachments, but also because the precise form of the attachments is

not reliably visible in the image. Hence the indexing of parts (or textures) for shape

recognition can proceed more e�ectively by concentrating on the outer extremities.

Another possible justi�cation for such observations is that, in tasks such as grasp-

ing or collision avoidance, the outer part is also more important and deserves more

attention because it is the one that we are likely to encounter �rst4.

The outer region of a shape is thus more salient than its inner region. This implies

that the region of scene pixels assigned to the attentional region places more weight

on the outer, convex portions of the contour than on its interior concave elements

(or to interior homogeneous regions), and leads to the following claim:

Claim 2 The human visual system assigns a non-binary attentional function to

scene pixels with greater weight given to regions near the outside of shapes, which

become more salient.

Note that this claim simply refers to \regions near the outside", not to whether

the region is convex or concave. In Figure B.4, the outer portion of the protrusion

contains a small concavity, which presumably is the basis for the �gural comparison.

Exactly what region of the contour is involved in this judgement is unclear, and

may depend upon the property being assessed. All we wish to claim at this point

is that whatever this property, its principal region of support is the outer portion

of the contour. The process of specifying just which image elements constitute this

outer contour is still not clear, nor is the measure (nor weight) to be applied to these

elements. One possibility is an insideness measure. Such a measure could be easily

4For example, in Figure B.3 (bottom), the center and left stars would \hurt" when grasped,

whereas the right star would not because it has a \smooth" outside.
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computed as a function of the distance of the image elements to the \smoothed"

version of the contour (a circle in Figure B.3 and something close to a rectangle in

Figure B.4). In this context, the smoothed contour corresponds to the notion of

frame curves as used in Chapter 4.

This leads us to the following de�nition of frame curve which has to be read

bearing in mind claim 1:

De�nition 3 (Frame Curve): A frame curve is a virtual curve in the image which

lies along \the center" of the attentional region's boundary.

In general, the frame curve can be computed by smoothing the silhouette of the

shape. This is not always a well-de�ned process because the silhouette may be ill-

de�ned or fragmented, and because there is no known way of determining a unique

scale at which to apply the smoothing. Figure B.5 (center) shows a frame curve for

an alligator computed using such scheme. On the right, the regions of the shape

that are \outside" the frame curve have been colored; note that these regions do not

intersect, and correspond closely to the outer portions of the di�erent parts of the

shape. As mentioned above, these outer portions are both more stable and more

likely to be of immediate interest.

Our interpretation of the bias towards the inside suggests, implicitly, a part per-

ceptual organization scheme using the boundary of the shape as has been just dis-

cussed. The frame curve can be used to compute a part as follows:

De�nition 4 (Outside Rule): A part can be approximated as the portion of the

boundary of a shape (and the region enclosed by it) which lies outside (or inside)

the frame curve. Such portion of the boundary should be such that there is no larger

portion of the boundary which contains it.

Note that Claim 2 supports Claim 1 because the attentional function mentioned

in Claim 2 is to be taken to represent a fuzzy boundary for the attentional region.

The frame curve should not be seen as a discrete boundary for this attentional region
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(perhaps only at a �rst approximation). Indeed, we contend that a discrete boundary

is not a realistic concept.

Furthermore, the outside rule should not be seen as a de�nition of part (see

[Ho�man and Richards 1984] for a detailed de�nition) instead, it is just a way in

which parts can be computed. In fact, it resembles closely the way in which Curved

Inertia Frames computes the di�erent regions of the object.

B.4 Inside is More Salient than Outside

Consider once more the three-star patterns of Figure B.3. Imagine now that each of

these patterns is expanded to occupy 20 degrees of visual angle (roughly your hand

at 30 centimeters distance). In this case the inner protrusions may become more

prominent and now the left pattern may be more similar to the middle reference

pattern. (A similar e�ect can be obtained if one imagines trying to look through

these patterns, as if in preparation for reaching an object through a hole or window.)

Is this reversal of saliency simply due to a change in image size, or does the notion

of a \hole" carry with it a special weighting function for attentional assignments?

For example, perhaps by viewing the central region of any of the patterns of

Figure B.3 as a \hole", the speci�cation of what is outside the contour has been

reversed. Claim 2 would then continue to hold. However, now we require that pixel

assignments to \the attentional region" be gated by a higher level cognitive operator

which decides whether an image region should be regarded as an object \hole" or

not.

B.5 When a Hole Is Not a Hole

Consider next the star patterns in Figure B.6, which consist of two superimposed

convex shapes, one inside the other. Again with the middle pattern as reference,

typically subjects will pick as most similar the adjacent pattern to the right. This

is surprising, because these patterns are generally regarded as textured donuts, with
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the inner-most region a hole. But if this is the case and our previous claim is to

hold, then the left pattern should have been most similar. The favored choice is thus

as if the inner star pattern were viewed as one object occluding another. Indeed, if

we now force ourselves to take this view, ignoring the outer pattern, then the right

patterns are again more similar as in Figure B.3. So in either case, regardless of

whether we view the combination as a donut with a hole, or as one shape occluding

part of another, we still use the same portion of the inner contour to make our

similarity judgement. The hole of the donut thus does not act like a hole. The only

exception is when we explicitly try to put our hand through this donut hole. Then

the inner-most protrusions become more salient as previously described for \holes".

These results lead to the following (re-visited) claim:

Claim 2 (revisited): Once the attentional region and its frame are chosen, then

(conceptually) a sign is given to radial vectors converging or diverging from the center

of this frame (i.e. the focal point). If the vector is directed outward (as if an object

representation is accessed), then the outer portion of the encountered contours are

salient. If the vector is directed inward to the focal point (as if a passageway is

explored), then the inner portion of the contour becomes salient5

In the star patterns that we discussed in Section B.2 (see Figure B.3) the attention

was focused primarily on the stars as whole objects. That is, there is a center of

the �gure that appears as the \natural" place to begin to direct our attention. The

default location of this center, which is to become the center of a local coordinate

frame, seems to be, roughly, the center of gravity of the �gure [Richards and Kaufman

1969], [Kaufman and Richards 1969], [Palmer 1983]. Attention is then allowed to be

directed to locations within this frame. Consider next the shapes shown in the top

of Figure B.7. Each ribbon-like shape has one clear center on which we �rst focus

our attention. So now let us bend each of the ribbons to create a new frame center

which lies near the inner left edge of each �gure (Figure B.7, lower). Whereas before

the left pattern is regarded as more similar to the middle reference, now the situation

5There is an interesting exception to the rule: if the size of the contours is very big (in retinal

terms) then the inside is always more salient (as if we where only interested in the inside of large

objects).
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is starting to become confused. When the ribbons are �nally closed to create the

donuts of Figure B.6, the favored similarity judgement is for the right pattern. The

primary e�ect of bending and closing the ribbon seems to be a shift in the relation

between the attentional frame and the contours. Following the center of gravity

rule, this center eventually will move outside the original body of the ribbon. This

suggests that the judgments of texture similarity are dependent on the location of

the attentional coordinate frame.

Typically, as we move our gaze around the scene, the center of the coordinate

frame will shift with respect to the imaged contours, thus altering the pixel assign-

ments. A shift in the focus of attention without image movements can create an e�ect

similar to altered gaze. More details regarding these proposed computations will be

given in the next sections. What is important at the moment is that the saliency of

attentional assignments will depend upon the position of the contour with respect to

the location of the center of the attentional coordinate frame. The reader can test

this e�ect himself by forcing his attention to lie either within or outside the bound-

ary of the ribbons. Depending upon the position chosen, the similarity judgments

change consistently with Claim 2.

As we move our attention around the scene, the focus of attention will shift, but

the frame need not. But if the frame moves, then so consequently will the assignment

of scene pixels to (potentially) active image pixels. The visual system �rst picks a

(virtual) focal point in the scene, typically bounded by contours, and based on this

focal point, de�nes the extent of the region (containing the focal point) to be included

as the attended region. If all events in the selected region are treated as one object

or a collection of superimposed objects, then the radially distant (convex) portions

of the contours drive the similarity judgments and are weighted more heavily in the

�gural computations. On the other hand, if the choice is made to regard the focal

point as a visual ray along which something must pass through (such as a judgement

regarding the size of a hole), then the contours that lie radially the closest are given

greater weight (i.e. those that were previously concave). This led us to the revised

version of claim 2, namely that the attentional coordinate frame has associated with it

either an inward or outward pointing vector that dictates which portion of a contour

will be salient (i.e. outer versus inner). We have argued that the orientation of this

vector is task-dependent.
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Here we must introduce a contrary note. We do not propose that the attentional

frame is imposed only upon a 3D structure seen as an object. Such a view would

require that object recognition (or a 2 1/2 sketch [Marr 1982]) had already taken

place. Rather, our claim is that the attentional coordinate frame is imposed upon

a (frontal plane) silhouette or region prior to recognition (see claim 3 below), and

is used to support the object recognition process, such as by indexing the image

elements to a model. Hence, because a commitment is made to a coordinate frame

and the sign of its object-associated vectors (inward or outward), proper object

recognition could be blocked if either the location of the frame or the sign of its

radial vectors were chosen improperly.

B.6 What's an Attentional Frame?

Our least controversial claim is that the image region taken as the attentional frame

depends upon one's goal. Reversible illusory patterns, such as the Escher drawings

or Rubin's face-vase support this claim. The more controversial claim is that the

image region taken as attentional region does not have a boundary that can be

de�ned solely in terms of an image contour, even if we include virtual contours such

as those cognitive edges formed by the Kanizsa �gures. The reason is two fold: First,

the focal position of our attentional coordinate frame with respect to the contours

determines that part of the contour used in �gural similarity judgments, implying

that the region attended has changed, or at the very least has been given altered

weights. Second, whether the focal position is viewed as part of a passageway or

alternatively simply as a hole in an object a�ects the �gural boundary. In each

case, the region is understood to lie within an object, but the chosen task a�ects

the details of the region being processed. This e�ect is also seen clearly in textured

C-shaped patterns, and becomes acute when one is asked to judge whether X lies

inside the C, or if Y will �t into the C, etc. The virtual boundary assigned to close

the C when making such judgments of necessity will also depend in part upon the

size of the second object, Y . To simply assert that the attentional window is that

region lying inside an image contour misses the point of what the visual information

processor is up to.
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A simple experiment from the Rock laboratory demonstrates that the attentional

window is not simply the entire region of the display, but rather a collection of

scene elements. Some of the elements within this \attended" region may be ignored,

and thus, not be part of the structures at which higher level visual operations are

currently being applied. [Rock and Gutman 1981] showed two overlapping novel

outline �gures, one red and one green, for a brief period, e.g. one second. Subjects

were instructed to rate �gures of a given color on the basis of how much they liked

them (this attracts attention to one of the �gures). They later presented subjects

with a new set of outline �gures and asked subjects whether they had seen these

�gures in the previous phase of the experiment, regardless of their color. They

found that subjects were very good at remembering the attended shapes but failed

on the unattended ones. This experiment agrees with the model presented here, in

which only the attended set of structures is being processed. Thus, the attended

region is, clearly, not a region of pixels contained in the attended �gure because the

attended �gure was partly contained in such a region and did not yield any high-level

perception.

In order to show that what they were studying was failure of perception and

not merely selective memory for what was being attended or not attended, [Rock

and Gutman 1981] did another experiment. They presented a series, just like in the

previous case but with two familiar �gures in di�erent pairs of the series, one in

the attended color and one in the unattended color. They found that the attended

familiar �gure was readily recognized but that the unattended familiar �gure was

not. It is natural that if the unattended �gure is perceived and recognized it would

stand out. Failure of recognition therefore supports the belief that the fundamental

de�cit is of perception. The extent of such de�cit is unclear; it may be that the level

of processing reached for the unattended �gures is not complete but goes beyond

that of �gures not contained in the attended region.

Therefore, an operational de�nition of \what is an attentional region?" seems

more fruitful in trying to understand how images are interpreted. Our de�nition is

in this spirit, and leads to a slightly di�erent view of the initial steps involved in the

processing of visual images than those now in vogue in computational vision. This

is the subject of the next two sections.



196 Appendix B: Frame Curves and Non-Rigid Boundaries

B.7 Figure/Ground and Attentional Frames

In classical perceptual psychology \�gure" has a well-de�ned meaning that is most

closely associated with those image regions de�ned by \occluding" (as opposed to

ground, which corresponds to a \partly occluded surface"). Therefore, the classical

de�nition of �gure (versus ground) is in terms of three properties: (1) it is perceived

as closer to the observer, (2) it has the shape de�ned by the bounding contour, and

(3) it occludes the ground6.

Our latest claim introduces a complementary, mutually exclusive state to the

attentional frame within which �gural processing is presumed to occur. When the

attentional vector is pointing outward, as in \object mode", this implies that the

contour regions associated with the inward state of this vector should be assigned to

a separate state.

Consider the following experiment of [Rock and Sigman 1973] in which they

showed a dot moving up and down behind a slit or opening, as if a sinusoidal curve

was being translated behind it. The experiments were performed with slits of di�er-

ent shapes, so that in some cases the slit was perceived as an occluded surface and in

others as an occluding one. They found that the perception of the curve is achieved

only if the slit is perceived as an occluded region and not when it is perceived as

an occluding region. Using their terms, the \correct" perception is achieved only if

the slit is part of ground but not when it is part of the �gure. Using our terms, the

attentional window has not changed but rather its attributes have, because the slit

was viewed as a passageway between objects, and not as an object with a hole. Note

the di�erence between ground and attentional region.

In support of our view, another experiment by [Rock and Gilchrist 1975] shows

that the attentional window need not correspond to the occluding surface. In this

second experiment, they showed a horizontal line moving up and down with one end

remaining in contact with one side of an outline �gure of a face. Consequently, the

line in the display changes in length. When the line is on the side of the face most

observers see it changing size, adapting to the outline, while when it is on the other

6S. Palmer pointed out to us the importance of the classical de�nition of �gure/ground.
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side of the contour, it is seen with constant length but occluded by the face. This has

been described as a situation in which no �gure-ground reversal occurs. However, in

our terms the attentional window has changed because the attended region changes.

In the �rst case the region of attention corresponds to the occluding surface, and in

the second to the occluded one. Thus, attentional window need not correspond to the

occluding surface, even when the surfaces that are occluded are known. Again, this

conclusion is consistent with our de�nition of the attentional frame and its subsumed

region.

B.8 Against Ground; Or Not?; Or What?

Consider now a �gure-ground assignment in a situation where you are looking at the

edge between two objects that do not occlude each other. For example, the grass in

the border of a frozen lake or the edge of your car's door. What is ground in this case?

Clearly, in these examples there is not a well-de�ned foreground and background.

Is �gure the grass or is it the lake? These examples have been carefully chosen so

that depth relations are unclear between objects. In these situations one simply can

not assign �gure-ground. What is puzzling is that the number of occasions where

this happens is very abundant: a bottle and a cap, objects in abstract paintings, the

loops of a metallic chain etc.

Our proposal on attentional reference frames does not su�er from this problem,

since depth is treated as a �gure-ground attribute which need not have a well-de�ned

meaning in all cases. In other words, our notion of attentional frames can be used

to explain more perceptual phenomena than the classical notion of �gure-ground.

In addition, our observations are di�cult to explain in terms of �gure-ground.

What is the �gure and what is the ground in a �r tree? Is the air part of the �gure?

Our observations require that �gure be modi�ed so that it has a fuzzy boundary.

This can be seen as an extension of the classical de�nition. In other words, the

insideness measure mentioned above can be translated into a �gureness measure.

However, this interpretation would leave little role to ground. Furthermore, in some

cases the ground is what is capturing the attentional frame. In these latter cases the
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insideness measure would translate into a groundness measure leaving little role to

the �gure.

Therefore, �gure-ground and attentional frames are di�erent concepts. Atten-

tional frames can easily incorporate into them an attribute that measures �gureness,

hence capturing the essence of �gure-ground. In contrast, without an explicit refer-

ence to attention, one can not explain our observations with the classical notion of

�gure-ground.

B.9 Convexity, Perceptual Organization, Edges,

and Frames: Which Comes First?

There have been many proposals on what are the di�erent steps involved in visual

perception and it is not the main goal of this research to make yet another such

proposal. Nevertheless, our �ndings have some relevant implications to what should

be the nature of these steps which we will now discuss.

We suggest that the attentional frame and objects are not strongly coupled.

The attentional window is simply the image-based structures which support some

high-level processing, regardless of whether the region is assumed to be an object

in the foreground, an occluded object, a hole, a passageway or none of the above.

Rather, we have shown several examples where the assumptions or role of the region

is transformed onto an attribute (such as �gure-ground) of the attentional frame

that governs both which portions of the contours are included in the processing and

the type of processing to be done in it. Curiously, this suggests that a cognitive

judgement proceeds and selects that portion of an image or contour to be processed

for the task at hand.

But how can a cognitive judgement anticipate where attention will be directed

without some preliminary image processing that notes the current contours and

edges? We are thus required to postulate an earlier, more re
exive mechanism that

directs the eye, and hence the principal focus of attention, to various regions of the

image. Computational studies suggest that the location of such focus may involve a
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bottom-up process such as the one described in [Subirana-Vilanova 1990]. Subirana-

Vilanova's scheme computes points upon which further processing is directed using

either image contours or image intensities directly. Regions corresponding to each

potential point can also be obtained using bottom-up computations7. There is other

computational evidence that bottom-up grouping and perceptual organization pro-

cesses can correctly identify candidate interesting structures (see [Marroquin 1976],

[Witkin and Tenenbaum 1983], [Mahoney 1985], [Harlick and Shapiro 1985], [Lowe

1984, 1987], [Sha'ashua and Ullman 1988], [Jacobs 1989], [Grimson 1990], [Subirana-

Vilanova 1990]).

Psychological results in line with the Gestalt tradition [Wertheimer 1923], [Ko�ka

1935], [K�ohler 1940] argue for bottom-up processes too. However, they also provide

evidence that top-down processing is involved. Other experiments argue in this

direction, such as the one performed by [Kundel and Nodine 1983] in which a poor

copy of a shape is di�cult, if not impossible to segment correctly unless one is given

some high level help such as \this image contains an object of this type". With the

hint, perceptual organization and recognition proceed e�ortlessly. Other examples of

top-down processing include [Newhall 54], [Rock 1983], [Cavanagh 1991], [Friedman-

Hill, Wolfe, and Chun 1991],C.M. Mooney and P.B. Porter's binary faces, and R.C.

Jones' spotted dog. The role of top-down processing may be really simple, such as

controlling or tweaking the behavior of an otherwise purely bottom-up process; or

perhaps it involves selecting an appropriate model or structure among several ones

computed bottom-up; or perhaps just indexing. In either case the role of top-down

processing can not be ignored. Indeed, here we claim that the setting up of the

attentional coordinate frame is an important early step in image interpretation.

Our observations suggest that perceptual organization results in regions that are

closed or convex (at a coarse scale) as discussed (see also section 5). This corrob-

orates computational studies on perceptual organization which also point in that

7The result of these computations may a�ect strongly the choice of reference frames. For ex-

ample, if the inner stars in Figure B.6 are rotated so as to align with the outer stars (creating

convexities in the space between the two), our attention seems more likely to shift to the region

in-between the two stars and in this case the similarities will change in agreement with claim 2.

Another way of increasing the preference for the \in-between" reference frame in Figures B.6

and B.7 is by coloring the donut black and leaving the surrounding white (because in human

perception there is a bias towards dark objects).
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direction, demonstrating the e�ectiveness and the viability of perceptual organiza-

tion schemes which limit themselves to �nding convex or \enclosed" regions (or at

least favor them) [Jacobs 1989], [Huttenlocher and Wayner 1990], [Subirana-Vilanova

1990], [Clemens 1991], [Subirana-Vilanova and Sung]. It is still unclear if this is a

general limitation of the visual system, a compound e�ect with inside and outside, or

rather speci�c to shape perception. There are, however, several areas that may bring

some more light onto the question. One of them is the study of the gamma e�ect:

When a visual object is abruptly presented on a homogeneous background, its sudden

appearance is accompanied by an expansion of the object. Similarly, a contraction

movement is perceived if the object suddenly disappears from the visual �eld. Such

movements were observed a long time ago and were named \gamma" movements by

[Kenkel 1913], (see [Kanizsa 1979] for an introduction). For non-elongated shapes,

the direction of movement of the �gure is generally centrifugal (from the center out-

ward for expansion and from the periphery toward the center for contraction). For

elongated shapes, the movement occurs mainly along the perceptual privileged axes.

It is unclear whether the movements are involved in the selection of �gure or if, on

the contrary are subsequent to it. In any case they might be related to a coloring

process (perhaps responsible for the expansion movements) involved in �gure selec-

tion that would determine a non-discrete boundary upon which saliency judgments

are established (see also [Mumford, Kosslyn, Hillger and Herrnstein 1987]). If this

is true, studying the e�ect on non-convex shapes (such as those on Figure B.7) may

provide cues to what sort of computation is used when the �gures are not convex,

and to the nature of the inside/outside asymmetry.

Another area that may be interesting to study is motion capture which was

observed informally by [Ramachandran and Anstis 83]: When an empty shape is

moved in a dynamic image of random dots it \captures" the points that are inside

it. This means that the points inside the shape are perceived as moving in the same

direction of the shape even though they are, in fact, stationary (randomly appearing

for a short interval). This can be informally veri�ed by the reader by drawing a

circle on a transparency and sliding it through the screen of a connected TV with

noise: The points inside the circle will be perceived as moving along with the circle.

The results hold even if the circle has some gaps and it has been shown that they

also hold when the shapes are de�ned by subjective contours [Ramachandran 86].
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There is no clear study of what happens for non-convex shapes such as a C. What

portions are captured? Informal experiments done in our laboratory seem to con�rm

that the boundary of the captured region is somewhat fuzzy for unclosed shapes like

a C which supports the notion of a fuzzy boundary. In addition, the shape for the

captured region seems to have convexity restrictions similar to the ones suggested

for the inside-outside relations. It is unclear if both mechanisms are related but the

similarity is intriguing. This seems a very promising direction for future research.

Further evidence for the bias towards convex structures is provided by an aston-

ishing result obtained recently by [Cumming, Hurlbert, Johnson and Parker 1991]:

when a textured cycle of a sine wave in depth (the upper half convex, the lower

half concave) is seen rotating both halfs may appear convex8, despite the fact that

this challenges rigidity9 (in fact, a narrow band between the two ribbons is seen as

moving non-rigidly!).

It is also of interest to study how people perceive ambiguous patterns or tilings

[Tuijl 1980], [Shimaya and Yoroizawa 1990] that can be organized in several di�erent

ways. It has been shown that in some cases the preference for convex structures

can overcome the preference for symmetric structures that are convex [Kanizsa and

Gerbino 1976]. The interaction between convex and concave regions is still unclear,

especially if the tilings are not complete.

Studies with pigeons10 [Herrnstein, Vaughan, Mumford and Kosslyn 1989] indi-

cate that they can deal with inside-outside relations so long as the objects are convex

but not when they are concave. It is unclear if some sort of \inside-outside" is used

at all by the pigeons. More detailed studies could reveal the computation involved,

and perhaps whether they use a local feature strategy or a global one. This, in turn,

may provide some insights into the limitations of our visual system.

8The surface can be described by the equation Z = sin(y) where Z is the depth from the �xation

plane. The rotation is along the Y -axis by +=� 10 degrees at 1 Hz.
9This observation will be relevant later because it supports the notion that a frame is set in the

image before structure from motion is recovered (see claim 3 and related discussion).
10The pigeon visual system, despite its reduced dimensions and simplicity, is capable of some

remarkable recognition tasks that do not involve explicit inside/outside relations. See [Herrnstein

and Loveland 1964], [Cerella 1982], [Herrnstein 1984] for an introduction.
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B.10 Against Frame Alignment

As described in the previous sections, our proposal implies that the establishment

of a frame of reference is required prior to recognition. In other words, without the

frame, which is used to set the saliency of the di�erent image regions, recognition

can not proceed. We have pinned down three aspects of it: its location, its size and

its inside and outside. Previous research on frames has focused on the orientation

of such a frame (relevant results include, to name but a few [Attneave 1967], [Shep-

ard and Metzler 1971], [Rock 1973], [Cooper 1976], [Wiser 1980], [Schwartz 1981],

[Shepard and Cooper 1982], [Jolicoeur and Landau 1984], [Jolicoeur 1985], [Palmer

1985], [Corballis and Cullen 86], [Maki 1986], [Jolicoeur, Snow and Murray 1987],

[Parsons and Shimojo 1987], [Robertson, Palmer and Gomez 1987], [Shepard and

Metzler 1988], [Corballis 1988], [Palmer, Simone and Kube 1988], [Georgopoulos,

Lurito, Petrides, Schwartz and Massey 1989], [Tarr and Pinker 1989]), on the in-


uence of the environment ([Mach 1914], [Attneave 1968], [Palmer 1980], [Palmer

and Bucher 1981], [Humphreys 1983], [Palmer 1989]), on its location ([Richards and

Kaufman 1969], [Kaufman and Richards 1969], [Cavanagh 1978], [Palmer 1983], [Ca-

vanagh 1985], [Nazir and O'Reagan 1990]), and on its size ([Sekuler and Nash 1972],

[Cavanagh 1978], [Jolicoeur and Besner 1987], [Jolicoeur 1987], [Larsen and Bund-

sen 1987]). Exciting results have been obtained in this directions but it is not the

purpose to review them here.

The shape of the frame, instead, has received very little attention. The frame

alignment approach to recognition suggests that in some cases, a curved frame might

be useful (see also [Palmer 1989]). In particular, it suggests the recognition of elon-

gated curved objects, such as the ones shown in Figure B.7, by unbending them

using their main curved axis as a frame to match the unbended versions. If human

vision used such a scheme, one would expect no di�erences in the perception of the

shapes shown on the top of Figure B.7 from those on the bottom of the same �gure.

As we have discussed, our �ndings suggest otherwise, which argues against such a

mechanism in human vision.
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B.11 Related E�ects: What Do You Want to be

More Salient?

The shapes used so far in our examples have been de�ned by image contours. The

results, however, do not seem to depend on how such contours are established and

similar results seem to hold when the shapes are de�ned by motion or other discon-

tinuities. Thus, the results seem to re
ect the true nature of shape perception. In

this section we will suggest that similar biases in saliency occur in other dimensions

of visual perception. What all of them have in common is that they require the

establishment of an attentional frame of reference at an early stage, and that the

nature of the frame depends on the task at hand. In particular, we will suggest that:

top is more salient than bottom, near is more salient than far and outward motion

is more salient than inward motion.

Top is more salient than bottom; or not.

Consider the contours in Figure B.8, the center contour appears more similar to the

one on the right than to the one on the left. We suggest that this is because the top of

the contours is, in general, more salient than its bottom. We can provide functional

justi�cation similar to that given in the inside-outside case: the top is more salient

because, by default, the visual system is more interested in it, as if it were the part of

a surface that we contact �rst. Just like with our inside-outside notion, the outcome

can be reversed by changing the task (consider they are the roof of a small room

that you are about to enter). Thus, there is an asymmetry on the saliency of the two

sides of such contour (top and bottom) similar to the inside/outside one discussed

in the previous sections.

Near is more salient than far; or not.

When looking for a fruit tree of a certain species it is likely that, in addition we

are interested in �nding the one that is closer to us. Similarly, if we are trying to

grasp something that is surrounded by other objects, the regions that are closer to
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our hand are likely to be of more interest than the rest of the scene. We suggest

that when three-dimensional information is available, the visual system emphasizes

the closer regions of the scene. Evidence is shown in Figure B.9 in which we show a

stereo pair with surfaces similar to the silhouette of the star of Figure B.3.

At a �rst glance, most see two of the three surfaces of Figure B.3 as being more

similar. The preference, as in the previous case, can be reversed if we change the

task: imagine, for example, that you are 
ying above such surfaces and are looking

for a place to land. Your attention will change to the far portions of the surfaces and

with it your preferred similarities. Therefore, attention and the task at hand play an

important role in determining how we perceive the three-dimensional world. Note

also, that, as in the previous examples, a matching measure based on the distance

between two surfaces can not account for our observations. For in this case, such

distance to the center surface is the same for both bounding surfaces.

Expansion is more salient than contraction; or not.

Is there a certain type of motion that should be of most interest to the human

visual system? Presumably, motion coming directly toward the observer is more

relevant than motion away from it. Or, similarly, expanding motion should be more

salient than contracting motion. Evidence in support of this suggestion is provided

by a simple experiment illustrated in Figure B.1011. Like in the previous cases,

two seemingly symmetric percepts are not perceived equally by the visual system.

This distinction, again, seems to bear on some simple task-related objectives of the

observer.

So, what's more salient? How does perception work?

Inside/outside, near/far, expansion/contraction and top/bottom are generally not

correlated. If saliency were determined independently for each of these relations,

then con
icts could arise in some cases. For example, the inside of an object may be

11In a pool of 7 MIT graduate students, all but one reported that their attention was directed

�rst at the expanding pattern.
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near or far, in the top or in the bottom of the image. Will, in this case, the outside

regions on the bottom be more salient than those that are inside and on the top?

This is an important issue that will not be addressed here. A more detailed

understanding of how attention and perceptual organization interact with the early

vision modules is required. In any case, it would be interesting to �nd a modular

division showing how these processes may interact. Unfortunately, this is a no-win

situation. Either the modules are too few to be interesting or the division is easily

proven to be wrong. Nevertheless, it may be useful to give a proposal as precise as

possible to illustrate what has been said so far. Figure B.11 is it.

Like in [Witkin and Tenenbaum 1983], our proposal is that grouping is done very

early (before any 2 1/2 D sketch-like processing), but we point out the importance

of selecting a coordinate frame which, among other things, is involved in top-down

processing and can be used to index into a class of models. Indexing can be based

on the coarse description of the shape that the frame can produce, or on the image

features associated with the frame. As shown in Figure B.11, this frame may later

be enhanced by 3D information coming from the di�erent early vision modules. Like

in [Jepson and Richards 91], we suggest that one of the most important roles of the

frame is to select and articulate the processing on the \relevant" structures of the

image (see also footnote 7). This leads us to the last claim of the Appendix:

Claim 3 An attentional \coordinate" frame is imposed in the image prior to con-

structing an object description for recognition.

In fact, the version of Curved Inertia Frames presented in Chapter 3 computes

frame curves prior to an object description. In addition, Curved Inertia Frames can

locate convex structures to support an object description for recognition.
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B.12 What's New

The fact that �gure and ground reversals are attention related has been known for

some time [Rubin 1921]12. However, there appears to be no precise statement of

the relation between \�gure" and notions of \inside" and \object", nor has it been

noted previously that contour saliency depends on inside/outside, near/far, expan-

sion/contraction and top/bottom relations, and changes when the task is changed,

such as viewing a region as something to pass thru, rather than as a shape to be

recognized.

These new observations support an operational de�nition of reference frames

which are based on attention. We have suggested that occlusion be treated as an

attribute of the attentional frame. A key ingredient is the processing focus, not an

image region typically de�ned as \�gure". Clearly, any proposal that relates an

attentional window to object fails: due to the existence of fuzzy boundaries. The

idea that the processing focuss has a non-discrete boundary has not been suggested

previously. This leads to the concept of frame curve which can be used for shape

segmentation in conjunction with Inside/Outside relations.

Our �ndings also demonstrate that the task at hand controls top-down processing.

Existing evidence for top-down processing shows its role in increasing the speed

and performance of recognition (by providing hints, such as restricting the set of

models to be considered). However, a qualitative role of top-down processing (such

as determining whether we are looking for an object or a hole), not dependent on

the image, like the one presented here, suggests new directions for inquiries.

Finally, we have shown that \matching to model" will not correspond with human

perception unless inside/outside, top/bottom, expansion/contraction and near/far

relations are factored early in the recognition strategy. We have also discussed sev-

eral ways in which the role of convexity can be studied in human vision, such as

inside/outside relations, gamma movements and motion capture. Our observations

12[Rubin 1921] showed subjects simple contours where there was a two way ambiguity in what

should be �gure (similar to the reversible �gure in the top of Figure B.4). He found that if one region

was found as �gure when shown the image for the �rst time then, if on subsequent presentations

the opposite region was found as �gure, recognition would not occur.
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provide new insight into the nature of the attention and perceptual organization

processes involved in visual perception. In particular, they indicate that a frame is

set prior to recognition, (challenging, among other things, the early role of rigidity

in motion segmentation) and agree with a model in which recognition proceeds by

the successive processing of convex chunks of image structures de�ned by this frame.

Note that the notions of fuzzy boundaries and frame curve reinforce the idea

that discontinuities should not be detected early on but only after a frame has been

computed (see also Chapter 3).
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Figure B.3: Top row: Use the middle pattern as reference. Most see the left
pattern as more similar to the reference. This could be because it has a smaller
number of modi�ed corners (with respect to the center) than the right one, and
therefore, a pictorial match is better. Second row: In this case, the left and right
stars look equally similar to the center one. This seems natural if we consider that
both have a similar number of corners smoothed. Third row: Most see the left
pattern as more similar despite the fact that both, left and right, have the same
number of smoothed corners with respect to the center star. Therefore, in order
to explain these observations, one can not base an argument on just the number
of smoothed corners. The position of the smoothed corners need be taken into
account, i.e. preferences are not based on just pictorial matches. Rather, here the
convexities on the outside of the patterns seem to drive our similarity judgement.
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Figure B.4: Top: Reversible �gure. Second Row: The contour (shown again in
the center) that de�ned the previous reversible �gure is modi�ed in two similar
ways (left and right contours). Third and fourth row: When such three contours
are closed a preference exists, and this preference depends for most on the side
used to close the contour. Use the center shape as reference in both rows. As in
the example of the previous Figure most favor the outer portions of the shape to
judge similarity. A distance metric, based solely on a pictorial match and that
does not take into account the relative location of the di�erent points of the shape,
can not account for these observations.
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Figure B.5: Top left: Alligator image. Top center: Edges of alligator image.
Top right: Alligator edges (the longer ones). Second row left: Alligator parts
de�ned as negative minima of curvature [Ho�man and Richards 1984] (curvature
plot bellow and extrema overlaid as circles on alligator edges) images illustrate
the part decomposition on the alligator image using the negative-minima rule.
Second row center: Distance transform. Second row right: Extrema of distance
transform. Bottom left: Alligator with frame curve superimposed which has been
computed using a standard smoothing algorithm. Bottom right: The di�erent
parts of the alligator are shaded using the outside rule.
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Figure B.6: Star patterns with \holes" treat the inside ring of the shape as if this
ring was an occluding shape, i.e. as if it was independent from the surrounding
contours, even if one perceives a donut like shape.
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Figure B.7: Top: Using the middle shape as a reference, most see the left shape as
more similar. Bottom: If this same shape is bent, the situation becomes confused.

Figure B.8: Top is more salient than bottom: Using the middle pattern as refer-
ence, most see the right contour as more similar.

Figure B.9: This random dot stereo diagram illustrates that close structures are
more salient in visual perception than those that are further away.
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Figure B.10: When the dots in this two similar �gures are moving towards the
center on one of them, and towards the outside on the other, attention focuses
�rst on the expanding 
ow. This provides evidence that motion coming directly
toward the observer is more salient than motion away from it.
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Figure B.11: A modular description of visual perception that illustrates some of
the concepts discussed here. The di�erent frames and image features depicted may
share data structures; this accounts for some implicit feed-back in the diagram.
(The Figure emphasizes the order in which events take place, not the detailed
nature of the data structures involved.) It is suggested that perception begins
by some simple image features which are used to compute a frame that is used
to interpret these image features. The frame is an active structure which can be
modi�ed by visual routines. In this diagram, shape appears as the main source
for recognition but indexing plays also an important role. Indexing can be based
on features and on a rough description of the selected frame.
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